» Articles » PMID: 39134711

Structural Basis of LRPPRC-SLIRP-dependent Translation by the Mitoribosome

Overview
Date 2024 Aug 12
PMID 39134711
Authors
Affiliations
Soon will be listed here.
Abstract

In mammalian mitochondria, mRNAs are cotranscriptionally stabilized by the protein factor LRPPRC (leucine-rich pentatricopeptide repeat-containing protein). Here, we characterize LRPPRC as an mRNA delivery factor and report its cryo-electron microscopy structure in complex with SLIRP (SRA stem-loop-interacting RNA-binding protein), mRNA and the mitoribosome. The structure shows that LRPPRC associates with the mitoribosomal proteins mS39 and the N terminus of mS31 through recognition of the LRPPRC helical repeats. Together, the proteins form a corridor for handoff of the mRNA. The mRNA is directly bound to SLIRP, which also has a stabilizing function for LRPPRC. To delineate the effect of LRPPRC on individual mitochondrial transcripts, we used RNA sequencing, metabolic labeling and mitoribosome profiling, which showed a transcript-specific influence on mRNA translation efficiency, with cytochrome c oxidase subunit 1 and 2 translation being the most affected. Our data suggest that LRPPRC-SLIRP acts in recruitment of mitochondrial mRNAs to modulate their translation. Collectively, the data define LRPPRC-SLIRP as a regulator of the mitochondrial gene expression system.

Citing Articles

Mettl15-Mettl17 modulates the transition from early to late pre-mitoribosome.

Zgadzay Y, Mirabello C, Wanes G, Panek T, Chauhan P, Nystedt B bioRxiv. 2025; .

PMID: 39896671 PMC: 11785013. DOI: 10.1101/2024.12.18.629302.


LRPPRC and SLIRP synergize to maintain sufficient and orderly mammalian mitochondrial translation.

Rubalcava-Gracia D, Bubb K, Levander F, Burr S, August A, Chinnery P Nucleic Acids Res. 2024; 52(18):11266-11282.

PMID: 39087558 PMC: 11472161. DOI: 10.1093/nar/gkae662.


The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches.

Brischigliaro M, Kruger A, Moran J, Antonicka H, Ahn A, Shoubridge E Nucleic Acids Res. 2024; 52(16):9710-9726.

PMID: 39036954 PMC: 11381339. DOI: 10.1093/nar/gkae645.


The human mitochondrial mRNA structurome reveals mechanisms of gene expression.

Moran J, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A Science. 2024; 385(6706):eadm9238.

PMID: 39024447 PMC: 11510358. DOI: 10.1126/science.adm9238.

References
1.
Amunts A, Brown A, Toots J, Scheres S, Ramakrishnan V . Ribosome. The structure of the human mitochondrial ribosome. Science. 2015; 348(6230):95-98. PMC: 4501431. DOI: 10.1126/science.aaa1193. View

2.
Brown A, Rathore S, Kimanius D, Aibara S, Bai X, Rorbach J . Structures of the human mitochondrial ribosome in native states of assembly. Nat Struct Mol Biol. 2017; 24(10):866-869. PMC: 5633077. DOI: 10.1038/nsmb.3464. View

3.
Sissler M, Hashem Y . Mitoribosome assembly comes into view. Nat Struct Mol Biol. 2021; 28(8):631-633. DOI: 10.1038/s41594-021-00640-3. View

4.
Itoh Y, Khawaja A, Laptev I, Cipullo M, Atanassov I, Sergiev P . Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature. 2022; 606(7914):603-608. PMC: 9200640. DOI: 10.1038/s41586-022-04795-x. View

5.
Lavdovskaia E, Hillen H, Richter-Dennerlein R . Hierarchical folding of the catalytic core during mitochondrial ribosome biogenesis. Trends Cell Biol. 2021; 32(3):182-185. DOI: 10.1016/j.tcb.2021.09.004. View