» Articles » PMID: 22661577

LRPPRC/SLIRP Suppresses PNPase-mediated MRNA Decay and Promotes Polyadenylation in Human Mitochondria

Overview
Specialty Biochemistry
Date 2012 Jun 5
PMID 22661577
Citations 109
Authors
Affiliations
Soon will be listed here.
Abstract

In human mitochondria, 10 mRNAs species are generated from a long polycistronic precursor that is transcribed from the heavy chain of mitochondrial DNA, in theory yielding equal copy numbers of mRNA molecules. However, the steady-state levels of these mRNAs differ substantially. Through absolute quantification of mRNAs in HeLa cells, we show that the copy numbers of all mitochondrial mRNA species range from 6000 to 51,000 molecules per cell, indicating that mitochondria actively regulate mRNA metabolism. In addition, the copy numbers of mitochondrial mRNAs correlated with their cellular half-life. Previously, mRNAs with longer half-lives were shown to be stabilized by the LRPPRC/SLIRP complex, which we find that cotranscriptionally binds to coding sequences of mRNAs. We observed that the LRPPRC/SLIRP complex suppressed 3' exonucleolytic mRNA degradation mediated by PNPase and SUV3. Moreover, LRPPRC promoted the polyadenylation of mRNAs mediated by mitochondrial poly(A) polymerase (MTPAP) in vitro. These findings provide a framework for understanding the molecular mechanism of mRNA metabolism in human mitochondria.

Citing Articles

Structural insights into human PNPase in health and disease.

Li Y, Wang C, Patra M, Chen Y, Yang W, Yuan H Nucleic Acids Res. 2025; 53(4).

PMID: 39997218 PMC: 11851098. DOI: 10.1093/nar/gkaf119.


The Vsr-like protein FASTKD4 regulates the stability and polyadenylation of the MT-ND3 mRNA.

Yang X, Stentenbach M, Hughes L, Siira S, Lau K, Hothorn M Nucleic Acids Res. 2024; 53(4).

PMID: 39727163 PMC: 11879112. DOI: 10.1093/nar/gkae1261.


LINC02154 promotes cell cycle and mitochondrial function in oral squamous cell carcinoma.

Niinuma T, Kitajima H, Sato T, Ogawa T, Ishiguro K, Kai M Cancer Sci. 2024; 116(2):393-405.

PMID: 39576738 PMC: 11786299. DOI: 10.1111/cas.16379.


The mitochondrial mRNA-stabilizing protein SLIRP regulates skeletal muscle mitochondrial structure and respiration by exercise-recoverable mechanisms.

Pham T, Raun S, Havula E, Henriquez-Olguin C, Rubalcava-Gracia D, Frank E Nat Commun. 2024; 15(1):9826.

PMID: 39537626 PMC: 11561311. DOI: 10.1038/s41467-024-54183-4.


Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis.

Liu L, Shao M, Huang Y, Qian P, Huang H J Hematol Oncol. 2024; 17(1):95.

PMID: 39396039 PMC: 11470598. DOI: 10.1186/s13045-024-01615-9.


References
1.
Chen H, Rainey R, Balatoni C, Dawson D, Troke J, Wasiak S . Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol. 2006; 26(22):8475-87. PMC: 1636764. DOI: 10.1128/MCB.01002-06. View

2.
Tomecki R, Dmochowska A, Gewartowski K, Dziembowski A, Stepien P . Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucleic Acids Res. 2004; 32(20):6001-14. PMC: 534615. DOI: 10.1093/nar/gkh923. View

3.
Liao H, Spremulli L . Interaction of bovine mitochondrial ribosomes with messenger RNA. J Biol Chem. 1989; 264(13):7518-22. View

4.
Wydro M, Bobrowicz A, Temperley R, Lightowlers R, Chrzanowska-Lightowlers Z . Targeting of the cytosolic poly(A) binding protein PABPC1 to mitochondria causes mitochondrial translation inhibition. Nucleic Acids Res. 2010; 38(11):3732-42. PMC: 2887948. DOI: 10.1093/nar/gkq068. View

5.
Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A, Siep M . The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem. 2002; 278(3):1603-11. DOI: 10.1074/jbc.M208287200. View