6.
Buono C, Anzinger J, Amar M, Kruth H
. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest. 2009; 119(5):1373-81.
PMC: 2673852.
DOI: 10.1172/JCI35548.
View
7.
Wang Q, Zhang M, Torres G, Wu S, Ouyang C, Xie Z
. Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission. Diabetes. 2016; 66(1):193-205.
PMC: 5204316.
DOI: 10.2337/db16-0915.
View
8.
Skogsberg J, Lundstrom J, Kovacs A, Nilsson R, Noori P, Maleki S
. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes. PLoS Genet. 2008; 4(3):e1000036.
PMC: 2265530.
DOI: 10.1371/journal.pgen.1000036.
View
9.
Dupre-Crochet S, Erard M, NuBe O
. ROS production in phagocytes: why, when, and where?. J Leukoc Biol. 2013; 94(4):657-70.
DOI: 10.1189/jlb.1012544.
View
10.
Hotamisligil G
. Endoplasmic reticulum stress and atherosclerosis. Nat Med. 2010; 16(4):396-9.
PMC: 2897068.
DOI: 10.1038/nm0410-396.
View
11.
Ngo J, Choi D, Stanley I, Stiles L, Molina A, Chen P
. Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl-CoA. EMBO J. 2023; 42(11):e111901.
PMC: 10233380.
DOI: 10.15252/embj.2022111901.
View
12.
Palmieri E, Gonzalez-Cotto M, Baseler W, Davies L, Ghesquiere B, Maio N
. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat Commun. 2020; 11(1):698.
PMC: 7000728.
DOI: 10.1038/s41467-020-14433-7.
View
13.
Barthwal M, Anzinger J, Xu Q, Bohnacker T, Wymann M, Kruth H
. Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation. PLoS One. 2013; 8(3):e58054.
PMC: 3594233.
DOI: 10.1371/journal.pone.0058054.
View
14.
Ngo J, Osto C, Villalobos F, Shirihai O
. Mitochondrial Heterogeneity in Metabolic Diseases. Biology (Basel). 2021; 10(9).
PMC: 8470264.
DOI: 10.3390/biology10090927.
View
15.
Baratin M, Simon L, Jorquera A, Ghigo C, Dembele D, Nowak J
. T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node. Immunity. 2017; 47(2):349-362.e5.
DOI: 10.1016/j.immuni.2017.07.019.
View
16.
Ranade S, Qiu Z, Woo S, Hur S, Murthy S, Cahalan S
. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A. 2014; 111(28):10347-52.
PMC: 4104881.
DOI: 10.1073/pnas.1409233111.
View
17.
Kockx M, Herman A
. Apoptosis in atherosclerosis: beneficial or detrimental?. Cardiovasc Res. 2000; 45(3):736-46.
DOI: 10.1016/s0008-6363(99)00235-7.
View
18.
Zhao B, Li Y, Buono C, Waldo S, Jones N, Mori M
. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF). J Biol Chem. 2006; 281(23):15757-62.
DOI: 10.1074/jbc.M510714200.
View
19.
Cheng J, Wen J, Wang N, Wang C, Xu Q, Yang Y
. Ion Channels and Vascular Diseases. Arterioscler Thromb Vasc Biol. 2019; 39(5):e146-e156.
DOI: 10.1161/ATVBAHA.119.312004.
View
20.
Tabas I
. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal. 2009; 11(9):2333-9.
PMC: 2787884.
DOI: 10.1089/ars.2009.2469.
View