6.
Abramoff M, Folk J, Han D, Walker J, Williams D, Russell S
. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013; 131(3):351-7.
DOI: 10.1001/jamaophthalmol.2013.1743.
View
7.
Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J
. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Diabetes Care. 2018; 41(12):2509-2516.
DOI: 10.2337/dc18-0147.
View
8.
Yang Y, Pan J, Yuan M, Lai K, Xie H, Ma L
. Performance of the AIDRScreening system in detecting diabetic retinopathy in the fundus photographs of Chinese patients: a prospective, multicenter, clinical study. Ann Transl Med. 2022; 10(20):1088.
PMC: 9652560.
DOI: 10.21037/atm-22-350.
View
9.
Ashrafzadeh S, Hamdy O
. Patient-Driven Diabetes Care of the Future in the Technology Era. Cell Metab. 2018; 29(3):564-575.
DOI: 10.1016/j.cmet.2018.09.005.
View
10.
Zhou W, Sailani M, Contrepois K, Zhou Y, Ahadi S, Leopold S
. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. 2019; 569(7758):663-671.
PMC: 6666404.
DOI: 10.1038/s41586-019-1236-x.
View
11.
Heydon P, Egan C, Bolter L, Chambers R, Anderson J, Aldington S
. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol. 2020; 105(5):723-728.
PMC: 8077216.
DOI: 10.1136/bjophthalmol-2020-316594.
View
12.
Ting D, Yim-Lui Cheung C, Lim G, Wei Tan G, Quang N, Gan A
. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017; 318(22):2211-2223.
PMC: 5820739.
DOI: 10.1001/jama.2017.18152.
View
13.
Gulshan V, Peng L, Coram M, Stumpe M, Wu D, Narayanaswamy A
. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016; 316(22):2402-2410.
DOI: 10.1001/jama.2016.17216.
View
14.
Ruamviboonsuk P, Tiwari R, Sayres R, Nganthavee V, Hemarat K, Kongprayoon A
. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digit Health. 2022; 4(4):e235-e244.
DOI: 10.1016/S2589-7500(22)00017-6.
View
15.
Berman M, Guthrie N, Edwards K, Appelbaum K, Njike V, Eisenberg D
. Change in Glycemic Control With Use of a Digital Therapeutic in Adults With Type 2 Diabetes: Cohort Study. JMIR Diabetes. 2018; 3(1):e4.
PMC: 6238888.
DOI: 10.2196/diabetes.9591.
View
16.
Zequera M, Stephan S, Paul J
. Effectiveness of moulded insoles in reducing plantar pressure in diabetic patients. Annu Int Conf IEEE Eng Med Biol Soc. 2007; 2007:4671-4.
DOI: 10.1109/IEMBS.2007.4353382.
View
17.
LeCun Y, Bengio Y, Hinton G
. Deep learning. Nature. 2015; 521(7553):436-44.
DOI: 10.1038/nature14539.
View
18.
Khandakar A, Chowdhury M, Reaz M, Hamid Md Ali S, Kiranyaz S, Rahman T
. A Novel Machine Learning Approach for Severity Classification of Diabetic Foot Complications Using Thermogram Images. Sensors (Basel). 2022; 22(11).
PMC: 9185274.
DOI: 10.3390/s22114249.
View
19.
Deo R
. Machine Learning in Medicine. Circulation. 2015; 132(20):1920-30.
PMC: 5831252.
DOI: 10.1161/CIRCULATIONAHA.115.001593.
View
20.
Singh K, Singh V, Agrawal N, Gupta S, Singh K
. Association of Toll-like receptor 4 polymorphisms with diabetic foot ulcers and application of artificial neural network in DFU risk assessment in type 2 diabetes patients. Biomed Res Int. 2013; 2013:318686.
PMC: 3725976.
DOI: 10.1155/2013/318686.
View