» Articles » PMID: 39077592

Cardiac Hypertrophy: From Pathophysiological Mechanisms to Heart Failure Development

Abstract

Cardiac hypertrophy develops in response to increased workload to reduce ventricular wall stress and maintain function and efficiency. Pathological hypertrophy can be adaptive at the beginning. However, if the stimulus persists, it may progress to ventricular chamber dilatation, contractile dysfunction, and heart failure, resulting in poorer outcome and increased social burden. The main pathophysiological mechanisms of pathological hypertrophy are cell death, fibrosis, mitochondrial dysfunction, dysregulation of -handling proteins, metabolic changes, fetal gene expression reactivation, impaired protein and mitochondrial quality control, altered sarcomere structure, and inadequate angiogenesis. Diabetic cardiomyopathy is a condition in which cardiac pathological hypertrophy mainly develop due to insulin resistance and subsequent hyperglycaemia, associated with altered fatty acid metabolism, altered calcium homeostasis and inflammation. In this review, we summarize the underlying molecular mechanisms of pathological hypertrophy development and progression, which can be applied in the development of future novel therapeutic strategies in both reversal and prevention.

Citing Articles

Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications.

Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Lorenzo G Antioxidants (Basel). 2025; 14(1).

PMID: 39857406 PMC: 11759781. DOI: 10.3390/antiox14010072.


The Potential Contribution of MyomiRs miR-133a-3p, -133b, and -206 Dysregulation in Cardiovascular Disease Risk.

Crocco P, Montesanto A, La Grotta R, Paparazzo E, Soraci L, Dato S Int J Mol Sci. 2024; 25(23).

PMID: 39684483 PMC: 11641116. DOI: 10.3390/ijms252312772.


Pathophysiology of Angiotensin II-Mediated Hypertension, Cardiac Hypertrophy, and Failure: A Perspective from Macrophages.

Carter K, Shah E, Waite J, Rana D, Zhao Z Cells. 2024; 13(23).

PMID: 39682749 PMC: 11640308. DOI: 10.3390/cells13232001.


Circular RNAs in Cardiovascular Diseases: Molecular Mechanisms, Therapeutic Advances, and Innovations.

Yuan Z, Huang S, Jin X, Li S Genes (Basel). 2024; 15(11).

PMID: 39596623 PMC: 11593509. DOI: 10.3390/genes15111423.


The Dual Burden: Exploring Cardiovascular Complications in Chronic Kidney Disease.

Caturano A, Galiero R, Rocco M, Tagliaferri G, Piacevole A, Nilo D Biomolecules. 2024; 14(11).

PMID: 39595570 PMC: 11591570. DOI: 10.3390/biom14111393.


References
1.
Sasso F, Pafundi P, Gelso A, Bono V, Costagliola C, Marfella R . Telemedicine for screening diabetic retinopathy: The NO BLIND Italian multicenter study. Diabetes Metab Res Rev. 2018; 35(3):e3113. DOI: 10.1002/dmrr.3113. View

2.
Shimizu I, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N . Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest. 2010; 120(5):1506-14. PMC: 2860916. DOI: 10.1172/JCI40096. View

3.
Wilkins B, Dai Y, Bueno O, Parsons S, Xu J, Plank D . Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2003; 94(1):110-8. DOI: 10.1161/01.RES.0000109415.17511.18. View

4.
Ravi R, Mookerjee B, Bhujwalla Z, Sutter C, Artemov D, Zeng Q . Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 2000; 14(1):34-44. PMC: 316350. View

5.
Zhang Y, Liu Y, Liu H, Tang W . Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019; 9:19. PMC: 6377728. DOI: 10.1186/s13578-019-0282-2. View