6.
Xu Q, Vandenkoornhuyse P, Li L, Guo J, Zhu C, Guo S
. Microbial generalists and specialists differently contribute to the community diversity in farmland soils. J Adv Res. 2022; 40:17-27.
PMC: 9481938.
DOI: 10.1016/j.jare.2021.12.003.
View
7.
Ranjard L, Dequiedt S, Chemidlin Prevost-Boure N, Thioulouse J, Saby N, Lelievre M
. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun. 2013; 4:1434.
DOI: 10.1038/ncomms2431.
View
8.
Jiao S, Luo Y, Lu M, Xiao X, Lin Y, Chen W
. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants. Environ Pollut. 2017; 225:497-505.
DOI: 10.1016/j.envpol.2017.03.015.
View
9.
Wu W, Logares R, Huang B, Hsieh C
. Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environ Microbiol. 2016; 19(1):287-300.
DOI: 10.1111/1462-2920.13606.
View
10.
Behera P, Mohapatra M, Kim J, Rastogi G
. Benthic archaeal community structure and carbon metabolic profiling of heterotrophic microbial communities in brackish sediments. Sci Total Environ. 2019; 706:135709.
DOI: 10.1016/j.scitotenv.2019.135709.
View
11.
Wani A, Akhtar N, Sher F, Navarrete A, Americo-Pinheiro J
. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol. 2022; 204(2):144.
DOI: 10.1007/s00203-022-02757-5.
View
12.
Koizumi Y, Kojima H, Oguri K, Kitazato H, Fukui M
. Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA-based analysis, and related to physicochemical gradients. Environ Microbiol. 2004; 6(6):622-37.
DOI: 10.1111/j.1462-2920.2004.00620.x.
View
13.
Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J
. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol. 2012; 14(9):2457-66.
PMC: 3477592.
DOI: 10.1111/j.1462-2920.2012.02799.x.
View
14.
Zorz J, Sharp C, Kleiner M, Gordon P, Pon R, Dong X
. A shared core microbiome in soda lakes separated by large distances. Nat Commun. 2019; 10(1):4230.
PMC: 6748926.
DOI: 10.1038/s41467-019-12195-5.
View
15.
Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V
. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017; 11(4):853-862.
PMC: 5364357.
DOI: 10.1038/ismej.2016.174.
View
16.
Berry D, Widder S
. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014; 5:219.
PMC: 4033041.
DOI: 10.3389/fmicb.2014.00219.
View
17.
Logares R, Deutschmann I, Junger P, Giner C, Krabberod A, Schmidt T
. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020; 8(1):55.
PMC: 7171866.
DOI: 10.1186/s40168-020-00827-8.
View
18.
Lynch M, Neufeld J
. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015; 13(4):217-29.
DOI: 10.1038/nrmicro3400.
View
19.
He Q, Wang S, Feng K, Michaletz S, Hou W, Zhang W
. High speciation rate of niche specialists in hot springs. ISME J. 2023; 17(8):1303-1314.
PMC: 10356836.
DOI: 10.1038/s41396-023-01447-4.
View
20.
Langenheder S, Lindstrom E
. Factors influencing aquatic and terrestrial bacterial community assembly. Environ Microbiol Rep. 2019; 11(3):306-315.
DOI: 10.1111/1758-2229.12731.
View