6.
Filippi L, Camedda R, Frantellizzi V, Urbano N, De Vincentis G, Schillaci O
. Functional Imaging in Musculoskeletal Disorders in Menopause. Semin Nucl Med. 2023; 54(2):206-218.
DOI: 10.1053/j.semnuclmed.2023.10.001.
View
7.
Catanese S, Aringhieri G, Vivaldi C, Salani F, Vitali S, Pecora I
. Role of Baseline Computed-Tomography-Evaluated Body Composition in Predicting Outcome and Toxicity from First-Line Therapy in Advanced Gastric Cancer Patients. J Clin Med. 2021; 10(5).
PMC: 7961444.
DOI: 10.3390/jcm10051079.
View
8.
Tustison N, Avants B, Cook P, Zheng Y, Egan A, Yushkevich P
. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010; 29(6):1310-20.
PMC: 3071855.
DOI: 10.1109/TMI.2010.2046908.
View
9.
Barsotti S, Aringhieri G, Mugellini B, Torri F, Minichilli F, Tripoli A
. The role of magnetic resonance imaging in the diagnostic work-out of myopathies: differential diagnosis between inflammatory myopathies and muscular dystrophies. Clin Exp Rheumatol. 2023; 41(2):301-308.
DOI: 10.55563/clinexprheumatol/dkmz6o.
View
10.
Akinci DAntonoli T, Santini F, Deligianni X, Garcia Alzamora M, Rutz E, Bieri O
. Combination of Quantitative MRI Fat Fraction and Texture Analysis to Evaluate Spastic Muscles of Children With Cerebral Palsy. Front Neurol. 2021; 12:633808.
PMC: 8019698.
DOI: 10.3389/fneur.2021.633808.
View
11.
Harneshaug M, Saltyte Benth J, Kirkhus L, Gronberg B, Bergh S, Rostoft S
. CT Derived Muscle Measures, Inflammation, and Frailty in a Cohort of Older Cancer Patients. In Vivo. 2020; 34(6):3565-3572.
PMC: 7811618.
DOI: 10.21873/invivo.12200.
View
12.
He J, Luo W, Huang Y, Song L, Mei Y
. Sarcopenia as a prognostic indicator in colorectal cancer: an updated meta-analysis. Front Oncol. 2023; 13:1247341.
PMC: 10642225.
DOI: 10.3389/fonc.2023.1247341.
View
13.
Hortobagyi T, Vetrovsky T, Brach J, van Haren M, Volesky K, Radaelli R
. Effects of Exercise Training on Muscle Quality in Older Individuals: A Systematic Scoping Review with Meta-Analyses. Sports Med Open. 2023; 9(1):41.
PMC: 10244313.
DOI: 10.1186/s40798-023-00585-5.
View
14.
Yamamoto A, Kikuchi Y, Kusakabe T, Takano H, Sakurai K, Furui S
. Imaging spectrum of abnormal subcutaneous and visceral fat distribution. Insights Imaging. 2020; 11(1):24.
PMC: 7018866.
DOI: 10.1186/s13244-019-0833-4.
View
15.
Von Der Hagen M, Schallner J, Kaindl A, Koehler K, Mitzscherling P, Abicht A
. Facing the genetic heterogeneity in neuromuscular disorders: linkage analysis as an economic diagnostic approach towards the molecular diagnosis. Neuromuscul Disord. 2005; 16(1):4-13.
DOI: 10.1016/j.nmd.2005.10.001.
View
16.
Hassler E, Deutschmann H, Almer G, Renner W, Mangge H, Herrmann M
. Distribution of subcutaneous and intermuscular fatty tissue of the mid-thigh measured by MRI-A putative indicator of serum adiponectin level and individual factors of cardio-metabolic risk. PLoS One. 2021; 16(11):e0259952.
PMC: 8592416.
DOI: 10.1371/journal.pone.0259952.
View
17.
Cai J, Xing F, Batra A, Liu F, Walter G, Vandenborne K
. Texture Analysis for Muscular Dystrophy Classification in MRI with Improved Class Activation Mapping. Pattern Recognit. 2019; 86:368-375.
PMC: 6521874.
DOI: 10.1016/j.patcog.2018.08.012.
View
18.
Kim H, Kim H, Kim S, Cha Y, Kim J, Kim J
. Precise individual muscle segmentation in whole thigh CT scans for sarcopenia assessment using U-net transformer. Sci Rep. 2024; 14(1):3301.
PMC: 10853213.
DOI: 10.1038/s41598-024-53707-8.
View
19.
Ding J, Cao P, Chang H, Gao Y, Chan S, Vardhanabhuti V
. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat-water decomposition MRI. Insights Imaging. 2020; 11(1):128.
PMC: 7704819.
DOI: 10.1186/s13244-020-00946-8.
View
20.
Salam B, Al Zaidi M, Sprinkart A, Nowak S, Theis M, Kuetting D
. Opportunistic CT-derived analysis of fat and muscle tissue composition predicts mortality in patients with cardiogenic shock. Sci Rep. 2023; 13(1):22293.
PMC: 10724270.
DOI: 10.1038/s41598-023-49454-x.
View