6.
Ponnilavan V, Kannan S
. Structural, optical tuning, and mechanical behavior of zirconia toughened alumina through europium substitutions. J Biomed Mater Res B Appl Biomater. 2018; 107(4):1170-1179.
DOI: 10.1002/jbm.b.34210.
View
7.
Joo J, Yu T, Kim Y, Park H, Wu F, Zhang J
. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J Am Chem Soc. 2003; 125(21):6553-7.
DOI: 10.1021/ja034258b.
View
8.
Pokratath R, Lermusiaux L, Checchia S, Mathew J, Cooper S, Katja Mathiesen J
. An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals. ACS Nano. 2023; 17(9):8796-8806.
PMC: 10173684.
DOI: 10.1021/acsnano.3c02149.
View
9.
Banski M, Afzaal M, Podhorodecki A, Misiewicz J, Abdelhady A, OBrien P
. Passivation of lanthanide surface sites in sub-10 nm NaYF(4):Eu(3+) nanocrystals. J Nanopart Res. 2012; 14(11):1228.
PMC: 3501167.
DOI: 10.1007/s11051-012-1228-3.
View
10.
Gai S, Li C, Yang P, Lin J
. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 2013; 114(4):2343-89.
DOI: 10.1021/cr4001594.
View
11.
Lauria A, Villa I, Fasoli M, Niederberger M, Vedda A
. Multifunctional role of rare earth doping in optical materials: nonaqueous sol-gel synthesis of stabilized cubic HfO2 luminescent nanoparticles. ACS Nano. 2013; 7(8):7041-52.
DOI: 10.1021/nn402357s.
View
12.
Wang F, Liu X
. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc. 2008; 130(17):5642-3.
DOI: 10.1021/ja800868a.
View
13.
Liu Y, Zhou S, Tu D, Chen Z, Huang M, Zhu H
. Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J Am Chem Soc. 2012; 134(36):15083-90.
DOI: 10.1021/ja306066a.
View
14.
Goossens E, Deblock L, Caboor L, Van den Eynden D, Josipovic I, Isaacura P
. From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals. Small Methods. 2024; 8(10):e2301499.
DOI: 10.1002/smtd.202301499.
View
15.
Van den Eynden D, Pokratath R, De Roo J
. Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals. Chem Rev. 2022; 122(11):10538-10572.
DOI: 10.1021/acs.chemrev.1c01008.
View
16.
Mai H, Zhang Y, Si R, Yan Z, Sun L, You L
. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006; 128(19):6426-36.
DOI: 10.1021/ja060212h.
View
17.
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F
. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev. 2022; 122(6):5519-5603.
DOI: 10.1021/acs.chemrev.1c00644.
View
18.
Ghosh P, Patra A
. Role of surface coating in ZrO2/Eu3+ nanocrystals. Langmuir. 2006; 22(14):6321-7.
DOI: 10.1021/la0604883.
View
19.
Efros A, Brus L
. Nanocrystal Quantum Dots: From Discovery to Modern Development. ACS Nano. 2021; 15(4):6192-6210.
DOI: 10.1021/acsnano.1c01399.
View
20.
McGinnity T, Dominguez O, Curtis T, Nallathamby P, Hoffman A, Roeder R
. Hafnia (HfO2) nanoparticles as an X-ray contrast agent and mid-infrared biosensor. Nanoscale. 2016; 8(28):13627-37.
DOI: 10.1039/c6nr03217f.
View