» Articles » PMID: 39025072

The Guide-RNA Sequence Dictates the Slicing Kinetics and Conformational Dynamics of the Argonaute Silencing Complex

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2024 Jul 18
PMID 39025072
Authors
Affiliations
Soon will be listed here.
Abstract

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.

Citing Articles

The structural basis for RNA slicing by human Argonaute2.

Mohamed A, Wang P, Bartel D, Vos S Cell Rep. 2025; 44(1):115166.

PMID: 39932188 PMC: 11893014. DOI: 10.1016/j.celrep.2024.115166.


Structural basis for gene silencing by siRNAs in humans.

Sarkar S, Gebert L, MacRae I bioRxiv. 2024; .

PMID: 39677650 PMC: 11643337. DOI: 10.1101/2024.12.05.627081.


Target cleavage and gene silencing by Argonautes with cityRNAs.

Zhang H, Sim G, Kehling A, Adhav V, Savidge A, Pastore B Cell Rep. 2024; 43(10):114806.

PMID: 39368090 PMC: 11533134. DOI: 10.1016/j.celrep.2024.114806.


The structural basis for RNA slicing by human Argonaute2.

Mohamed A, Wang P, Bartel D, Vos S bioRxiv. 2024; .

PMID: 39229170 PMC: 11370433. DOI: 10.1101/2024.08.19.608718.


Elucidating microRNA-34a organisation within human Argonaute-2 by dynamic nuclear polarisation-enhanced magic angle spinning NMR.

Dasgupta R, Becker W, Petzold K Nucleic Acids Res. 2024; 52(19):11995-12004.

PMID: 39228364 PMC: 11514488. DOI: 10.1093/nar/gkae744.


References
1.
Willkomm S, Jakob L, Kramm K, Graus V, Neumeier J, Meister G . Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Nat Commun. 2022; 13(1):3825. PMC: 9250533. DOI: 10.1038/s41467-022-31480-4. View

2.
Mathews D, Disney M, Childs J, Schroeder S, Zuker M, Turner D . Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 2004; 101(19):7287-92. PMC: 409911. DOI: 10.1073/pnas.0401799101. View

3.
Zheng G, Lu X, Olson W . Web 3DNA--a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures. Nucleic Acids Res. 2009; 37(Web Server issue):W240-6. PMC: 2703980. DOI: 10.1093/nar/gkp358. View

4.
Jo M, Shin S, Jung S, Kim E, Song J, Hohng S . Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs. Mol Cell. 2015; 59(1):117-24. DOI: 10.1016/j.molcel.2015.04.027. View

5.
Sheu-Gruttadauria J, Xiao Y, Gebert L, MacRae I . Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 2019; 38(13):e101153. PMC: 6600645. DOI: 10.15252/embj.2018101153. View