» Articles » PMID: 38994645

Ligand-Directed Labeling of the Adenosine A Receptor in Living Cells

Abstract

The study of protein function and dynamics in their native cellular environment is essential for progressing fundamental science. To overcome the requirement of genetic modification of the protein or the limitations of dissociable fluorescent ligands, ligand-directed (LD) chemistry has most recently emerged as a complementary, bioorthogonal approach for labeling native proteins. Here, we describe the rational design, development, and application of the first ligand-directed chemistry approach for labeling the AAR in living cells. We pharmacologically demonstrate covalent labeling of AAR expressed in living cells while the orthosteric binding site remains available. The probes were imaged using confocal microscopy and fluorescence correlation spectroscopy to study AAR localization and dynamics in living cells. Additionally, the probes allowed visualization of the specific localization of AARs endogenously expressed in dorsal root ganglion (DRG) neurons. LD probes developed here hold promise for illuminating ligand-binding, receptor signaling, and trafficking of the AAR in more physiologically relevant environments.

Citing Articles

Ligand-directed covalent labelling of adenosine receptors.

Li C, Gregory K, Jorg M Purinergic Signal. 2025; .

PMID: 39992595 DOI: 10.1007/s11302-025-10073-y.


Biocompatible Sulfonium-Based Covalent Probes For Endogenous Tubulin Fluorescence Nanoscopy In Live And Fixed Cells.

Lukinavicius G, Auvray M, Koenen T, Dybkov O, Urlaub H Res Sq. 2025; .

PMID: 39975932 PMC: 11838727. DOI: 10.21203/rs.3.rs-5922324/v1.


Biocompatible sulfonium-based covalent probes for endogenous tubulin fluorescence nanoscopy in live and fixed cells.

Auvray M, Koenen T, Dybkov O, Urlaub H, Lukinavicius G bioRxiv. 2025; .

PMID: 39975388 PMC: 11838300. DOI: 10.1101/2025.01.27.635008.


Covalent functionalization of G protein-coupled receptors by small molecular probes.

Beerkens B, IJzerman A, Heitman L, van der Es D RSC Chem Biol. 2025; .

PMID: 39957994 PMC: 11827490. DOI: 10.1039/d4cb00294f.

References
1.
Sletten E, Bertozzi C . Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl. 2009; 48(38):6974-98. PMC: 2864149. DOI: 10.1002/anie.200900942. View

2.
Kosar M, Sykes D, Viray A, Vitale R, Sarott R, Ganzoni R . Platform Reagents Enable Synthesis of Ligand-Directed Covalent Probes: Study of Cannabinoid Receptor 2 in Live Cells. J Am Chem Soc. 2023; 145(28):15094-15108. DOI: 10.1021/jacs.2c13629. View

3.
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K . A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol. 2002; 21(1):86-9. DOI: 10.1038/nbt765. View

4.
Goulding J, Kondrashov A, Mistry S, Melarangi T, Vo N, Hoang D . The use of fluorescence correlation spectroscopy to monitor cell surface β2-adrenoceptors at low expression levels in human embryonic stem cell-derived cardiomyocytes and fibroblasts. FASEB J. 2021; 35(4):e21398. DOI: 10.1096/fj.202002268R. View

5.
Soave M, Briddon S, Hill S, Stoddart L . Fluorescent ligands: Bringing light to emerging GPCR paradigms. Br J Pharmacol. 2019; 177(5):978-991. PMC: 7042119. DOI: 10.1111/bph.14953. View