6.
Brunozzi D, Shakur S, Charbel F, Alaraj A
. Intracranial contrast transit times on digital subtraction angiography decrease more in patients with delayed intraparenchymal hemorrhage after Pipeline. Interv Neuroradiol. 2017; 24(2):140-145.
PMC: 5847013.
DOI: 10.1177/1591019917747248.
View
7.
Rengo M, Dharampal A, Lubbers M, Kock M, Wildberger J, Das M
. Impact of iodine concentration and iodine delivery rate on contrast enhancement in coronary CT angiography: a randomized multicenter trial (CT-CON). Eur Radiol. 2019; 29(11):6109-6118.
DOI: 10.1007/s00330-019-06196-7.
View
8.
Wu Y, Shaughnessy G, Hoffman C, Oberstar E, Schafer S, Schubert T
. Quantification of Blood Velocity with 4D Digital Subtraction Angiography Using the Shifted Least-Squares Method. AJNR Am J Neuroradiol. 2018; 39(10):1871-1877.
PMC: 6177311.
DOI: 10.3174/ajnr.A5793.
View
9.
Waechter I, Bredno J, Weese J, Barratt D, Hawkes D
. Using flow information to support 3D vessel reconstruction from rotational angiography. Med Phys. 2008; 35(7):3302-16.
DOI: 10.1118/1.2938729.
View
10.
Fujimura S, Yamanaka Y, Takao H, Ishibashi T, Otani K, Karagiozov K
. Hemodynamic and morphological differences in cerebral aneurysms between before and after rupture. J Neurosurg. 2023; 140(3):774-782.
DOI: 10.3171/2023.6.JNS23289.
View
11.
Takao H, Murayama Y, Otsuka S, Qian Y, Mohamed A, Masuda S
. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke. 2012; 43(5):1436-9.
DOI: 10.1161/STROKEAHA.111.640995.
View
12.
Shaughnessy G, Schafer S, Speidel M, Strother C, Mistretta C
. Measuring blood velocity using 4D-DSA: A feasibility study. Med Phys. 2018; 45(10):4510-4518.
PMC: 6767933.
DOI: 10.1002/mp.13120.
View
13.
Falk K, Harvey E, Schafer S, Speidel M, Strother C
. Optimizing the Quality of 4D-DSA Temporal Information. AJNR Am J Neuroradiol. 2019; 40(12):2124-2129.
PMC: 6975361.
DOI: 10.3174/ajnr.A6290.
View
14.
Sahoo A, Abdalkader M, Saatci I, Raymond J, Qiu Z, Huo X
. History of Neurointervention. Semin Neurol. 2023; 43(3):454-465.
DOI: 10.1055/s-0043-1771455.
View
15.
Pereira V, Bonnefous O, Ouared R, Brina O, Stawiaski J, Aerts H
. A DSA-based method using contrast-motion estimation for the assessment of the intra-aneurysmal flow changes induced by flow-diverter stents. AJNR Am J Neuroradiol. 2012; 34(4):808-15.
PMC: 7964491.
DOI: 10.3174/ajnr.A3322.
View
16.
Boegel M, Gehrisch S, Redel T, Rohkohl C, Hoelter P, Doerfler A
. Patient-individualized boundary conditions for CFD simulations using time-resolved 3D angiography. Int J Comput Assist Radiol Surg. 2016; 11(6):1061-9.
DOI: 10.1007/s11548-016-1367-6.
View
17.
Meng H, Tutino V, Xiang J, Siddiqui A
. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2013; 35(7):1254-62.
PMC: 7966576.
DOI: 10.3174/ajnr.A3558.
View
18.
Carr J, Hoiland R, Caldwell H, Coombs G, Howe C, Tremblay J
. Internal carotid and brachial artery shear-dependent vasodilator function in young healthy humans. J Physiol. 2020; 598(23):5333-5350.
DOI: 10.1113/JP280369.
View
19.
Falk K, Schafer S, Speidel M, Strother C
. 4D-DSA: Development and Current Neurovascular Applications. AJNR Am J Neuroradiol. 2020; 42(2):214-220.
PMC: 7872169.
DOI: 10.3174/ajnr.A6860.
View
20.
Damiano R, Tutino V, Paliwal N, Patel T, Waqas M, Levy E
. Aneurysm characteristics, coil packing, and post-coiling hemodynamics affect long-term treatment outcome. J Neurointerv Surg. 2019; 12(7):706-713.
PMC: 7293941.
DOI: 10.1136/neurintsurg-2019-015422.
View