6.
Isensee F, Jaeger P, Kohl S, Petersen J, Maier-Hein K
. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2020; 18(2):203-211.
DOI: 10.1038/s41592-020-01008-z.
View
7.
van der Vos C, Koopman D, Rijnsdorp S, Arends A, Boellaard R, van Dalen J
. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017; 44(Suppl 1):4-16.
PMC: 5541089.
DOI: 10.1007/s00259-017-3727-z.
View
8.
Piri R, Edenbrandt L, Larsson M, Enqvist O, Skovrup S, Iversen K
. "Global" cardiac atherosclerotic burden assessed by artificial intelligence-based versus manual segmentation in F-sodium fluoride PET/CT scans: Head-to-head comparison. J Nucl Cardiol. 2021; 29(5):2531-2539.
DOI: 10.1007/s12350-021-02758-9.
View
9.
Kim H, Shin K, Kim H, Lee E, Chung S, Koh K
. Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears?. PLoS One. 2022; 17(10):e0274075.
PMC: 9550047.
DOI: 10.1371/journal.pone.0274075.
View
10.
Ferrante M, Rinaldi L, Botta F, Hu X, Dolp A, Minotti M
. Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models. J Clin Med. 2022; 11(24).
PMC: 9784875.
DOI: 10.3390/jcm11247334.
View
11.
Sunoqrot M, Selnaes K, Sandsmark E, Langorgen S, Bertilsson H, Bathen T
. The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images. Diagnostics (Basel). 2021; 11(9).
PMC: 8471645.
DOI: 10.3390/diagnostics11091690.
View
12.
Duong M, Rudie J, Wang J, Xie L, Mohan S, Gee J
. Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging. AJNR Am J Neuroradiol. 2019; 40(8):1282-1290.
PMC: 6697209.
DOI: 10.3174/ajnr.A6138.
View
13.
Vasey B, Ursprung S, Beddoe B, Taylor E, Marlow N, Bilbro N
. Association of Clinician Diagnostic Performance With Machine Learning-Based Decision Support Systems: A Systematic Review. JAMA Netw Open. 2021; 4(3):e211276.
PMC: 7953308.
DOI: 10.1001/jamanetworkopen.2021.1276.
View
14.
Shaikh F, Dehmeshki J, Bisdas S, Roettger-Dupont D, Kubassova O, Aziz M
. Artificial Intelligence-Based Clinical Decision Support Systems Using Advanced Medical Imaging and Radiomics. Curr Probl Diagn Radiol. 2020; 50(2):262-267.
DOI: 10.1067/j.cpradiol.2020.05.006.
View
15.
Kitaguchi D, Takeshita N, Hasegawa H, Ito M
. Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives. Ann Gastroenterol Surg. 2022; 6(1):29-36.
PMC: 8786689.
DOI: 10.1002/ags3.12513.
View
16.
Chen Z, Zhang Y, Yan Z, Dong J, Cai W, Ma Y
. Artificial intelligence assisted display in thoracic surgery: development and possibilities. J Thorac Dis. 2022; 13(12):6994-7005.
PMC: 8743398.
DOI: 10.21037/jtd-21-1240.
View
17.
Xu P, Wang L, Mo B, Xie X, Hu R, Jiang L
. Identification of NLE1/CDK1 axis as key regulator in the development and progression of non-small cell lung cancer. Front Oncol. 2023; 12:985827.
PMC: 9931185.
DOI: 10.3389/fonc.2022.985827.
View
18.
Huynh E, Hosny A, Guthier C, Bitterman D, Petit S, Haas-Kogan D
. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020; 17(12):771-781.
DOI: 10.1038/s41571-020-0417-8.
View
19.
Lin A, Pieszko K, Park C, Ignor K, Williams M, Slomka P
. Artificial intelligence in cardiovascular imaging: enhancing image analysis and risk stratification. BJR Open. 2023; 5(1):20220021.
PMC: 10311632.
DOI: 10.1259/bjro.20220021.
View
20.
De Luca M, Crisci G, Armentaro G, Cicco S, Talerico G, Bobbio E
. Endothelial Dysfunction and Heart Failure with Preserved Ejection Fraction-An Updated Review of the Literature. Life (Basel). 2024; 14(1).
PMC: 10817572.
DOI: 10.3390/life14010030.
View