6.
Das S, Pradhan C, Devika Pillai
. β-Defensin: An adroit saviour in teleosts. Fish Shellfish Immunol. 2022; 123:417-430.
DOI: 10.1016/j.fsi.2022.03.017.
View
7.
Zhao J, Zhou L, Jin J, Zhao Z, Lan J, Zhang Y
. Antimicrobial activity-specific to Gram-negative bacteria and immune modulation-mediated NF-kappaB and Sp1 of a medaka beta-defensin. Dev Comp Immunol. 2008; 33(4):624-37.
DOI: 10.1016/j.dci.2008.11.006.
View
8.
Jin J, Zhou L, Wang Y, Li Z, Zhao J, Zhang Q
. Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS One. 2010; 5(12):e12883.
PMC: 3004800.
DOI: 10.1371/journal.pone.0012883.
View
9.
Cuesta A, Meseguer J, Esteban M
. Molecular and functional characterization of the gilthead seabream β-defensin demonstrate its chemotactic and antimicrobial activity. Mol Immunol. 2011; 48(12-13):1432-8.
DOI: 10.1016/j.molimm.2011.03.022.
View
10.
Ruangsri J, Kitani Y, Kiron V, Lokesh J, Brinchmann M, Karlsen B
. A novel beta-defensin antimicrobial peptide in Atlantic cod with stimulatory effect on phagocytic activity. PLoS One. 2013; 8(4):e62302.
PMC: 3636224.
DOI: 10.1371/journal.pone.0062302.
View
11.
Chen Y, Zhao H, Zhang X, Luo H, Xue X, Li Z
. Identification, expression and bioactivity of Paramisgurnus dabryanus β-defensin that might be involved in immune defense against bacterial infection. Fish Shellfish Immunol. 2013; 35(2):399-406.
DOI: 10.1016/j.fsi.2013.04.049.
View
12.
Dong J, Wu F, Ye X, Sun C, Tian Y, Lu M
. Β-defensin in Nile tilapia (Oreochromis niloticus): Sequence, tissue expression, and anti-bacterial activity of synthetic peptides. Gene. 2015; 566(1):23-31.
DOI: 10.1016/j.gene.2015.04.025.
View
13.
Zhu J, Wang H, Wang J, Wang X, Peng S, Geng Y
. Identification and characterization of a β-defensin gene involved in the immune defense response of channel catfish, Ictalurus punctatus. Mol Immunol. 2017; 85:256-264.
DOI: 10.1016/j.molimm.2017.03.009.
View
14.
Yang K, Hou B, Ren F, Zhou H, Zhao T
. Characterization of grass carp () beta-defensin 1: implications for its role in inflammation control. Biosci Biotechnol Biochem. 2018; 83(1):87-94.
DOI: 10.1080/09168451.2018.1519386.
View
15.
Thakur N, Qureshi A, Kumar M
. AVPpred: collection and prediction of highly effective antiviral peptides. Nucleic Acids Res. 2012; 40(Web Server issue):W199-204.
PMC: 3394244.
DOI: 10.1093/nar/gks450.
View
16.
Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava G
. AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform. 2020; 22(3).
DOI: 10.1093/bib/bbaa153.
View
17.
Win T, Malik A, Prachayasittikul V, Wikberg J, Nantasenamat C, Shoombuatong W
. HemoPred: a web server for predicting the hemolytic activity of peptides. Future Med Chem. 2017; 9(3):275-291.
DOI: 10.4155/fmc-2016-0188.
View
18.
Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N
. Identification of putative palytoxin as the cause of clupeotoxism. Toxicon. 1999; 37(1):55-65.
DOI: 10.1016/s0041-0101(98)00133-0.
View
19.
Park C, Yi K, Matsuzaki K, Kim M, Kim S
. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A. 2000; 97(15):8245-50.
PMC: 26932.
DOI: 10.1073/pnas.150518097.
View
20.
Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R
. LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods. 1999; 37(1):77-86.
DOI: 10.1016/s0167-7012(99)00048-2.
View