6.
Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K
. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015; 24(8):2125-37.
PMC: 4375422.
DOI: 10.1093/hmg/ddu733.
View
7.
Povysil G, Petrovski S, Hostyk J, Aggarwal V, Allen A, Goldstein D
. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat Rev Genet. 2019; 20(12):747-759.
DOI: 10.1038/s41576-019-0177-4.
View
8.
Cirulli E, Goldstein D
. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010; 11(6):415-25.
DOI: 10.1038/nrg2779.
View
9.
Schubach M, Maass T, Nazaretyan L, Roner S, Kircher M
. CADD v1.7: using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res. 2024; 52(D1):D1143-D1154.
PMC: 10767851.
DOI: 10.1093/nar/gkad989.
View
10.
Ionita-Laza I, McCallum K, Xu B, Buxbaum J
. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat Genet. 2016; 48(2):214-20.
PMC: 4731313.
DOI: 10.1038/ng.3477.
View
11.
Grimm D, Azencott C, Aicheler F, Gieraths U, MacArthur D, Samocha K
. The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Hum Mutat. 2015; 36(5):513-23.
PMC: 4409520.
DOI: 10.1002/humu.22768.
View
12.
Hobbs H, Brown M, Goldstein J
. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992; 1(6):445-66.
DOI: 10.1002/humu.1380010602.
View
13.
Shihab H, Gough J, Cooper D, Stenson P, Barker G, Edwards K
. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2012; 34(1):57-65.
PMC: 3558800.
DOI: 10.1002/humu.22225.
View
14.
Katsonis P, Wilhelm K, Williams A, Lichtarge O
. Genome interpretation using in silico predictors of variant impact. Hum Genet. 2022; 141(10):1549-1577.
PMC: 9055222.
DOI: 10.1007/s00439-022-02457-6.
View
15.
Pejaver V, Urresti J, Lugo-Martinez J, Pagel K, Lin G, Nam H
. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun. 2020; 11(1):5918.
PMC: 7680112.
DOI: 10.1038/s41467-020-19669-x.
View
16.
Pujar S, OLeary N, Farrell C, Loveland J, Mudge J, Wallin C
. Consensus coding sequence (CCDS) database: a standardized set of human and mouse protein-coding regions supported by expert curation. Nucleic Acids Res. 2017; 46(D1):D221-D228.
PMC: 5753299.
DOI: 10.1093/nar/gkx1031.
View
17.
Kuang D, Weile J, Kishore N, Nguyen M, Rubin A, Fields S
. MaveRegistry: a collaboration platform for multiplexed assays of variant effect. Bioinformatics. 2021; 37(19):3382-3383.
PMC: 8504617.
DOI: 10.1093/bioinformatics/btab215.
View
18.
Liu X, Li C, Mou C, Dong Y, Tu Y
. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020; 12(1):103.
PMC: 7709417.
DOI: 10.1186/s13073-020-00803-9.
View
19.
Livesey B, Marsh J
. Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations. Mol Syst Biol. 2020; 16(7):e9380.
PMC: 7336272.
DOI: 10.15252/msb.20199380.
View
20.
Riesselman A, Ingraham J, Marks D
. Deep generative models of genetic variation capture the effects of mutations. Nat Methods. 2018; 15(10):816-822.
PMC: 6693876.
DOI: 10.1038/s41592-018-0138-4.
View