6.
Mishra B, Reiling S, Zarena D, Wang G
. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol. 2017; 38:87-96.
PMC: 5494204.
DOI: 10.1016/j.cbpa.2017.03.014.
View
7.
Zhong C, Chen M, Chen Y, Yao F, Fang W
. Loss of DSTYK activates Wnt/β-catenin signaling and glycolysis in lung adenocarcinoma. Cell Death Dis. 2021; 12(12):1122.
PMC: 8636471.
DOI: 10.1038/s41419-021-04385-1.
View
8.
Ju X, Fan D, Kong L, Yang Q, Zhu Y, Zhang S
. Antimicrobial Peptide Brevinin-1RL1 from Frog Skin Secretion Induces Apoptosis and Necrosis of Tumor Cells. Molecules. 2021; 26(7).
PMC: 8038347.
DOI: 10.3390/molecules26072059.
View
9.
Selvarathinam K, Subramani P, Thekkumalai M, Vilwanathan R, Selvarajan R, Abia A
. Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines. Molecules. 2023; 28(3).
PMC: 9920962.
DOI: 10.3390/molecules28030930.
View
10.
Al-Darraji M, Jasim S, Salah Aldeen O, Ghasemian A, Rasheed M
. The Effect of LL37 Antimicrobial Peptide on FOXE1 and lncRNA PTCSC 2 Genes Expression in Colorectal Cancer (CRC) and Normal Cells. Asian Pac J Cancer Prev. 2022; 23(10):3437-3442.
PMC: 9924353.
DOI: 10.31557/APJCP.2022.23.10.3437.
View
11.
Li Q, Wang W, Yang T, Li D, Huang Y, Bai G
. LINC00520 up-regulates SOX5 to promote cell proliferation and invasion by miR-4516 in human hepatocellular carcinoma. Biol Chem. 2022; 403(7):665-678.
DOI: 10.1515/hsz-2021-0316.
View
12.
Maijaroen S, Klaynongsruang S, Roytrakul S, Konkchaiyaphum M, Taemaitree L, Jangpromma N
. An Integrated Proteomics and Bioinformatics Analysis of the Anticancer Properties of RT2 Antimicrobial Peptide on Human Colon Cancer (Caco-2) Cells. Molecules. 2022; 27(4).
PMC: 8880037.
DOI: 10.3390/molecules27041426.
View
13.
Wei H, Xie Z, Tan X, Guo R, Song Y, Xie X
. Temporin-Like Peptides Show Antimicrobial and Anti-Biofilm Activities against with Reduced Hemolysis. Molecules. 2020; 25(23).
PMC: 7730238.
DOI: 10.3390/molecules25235724.
View
14.
Sanchez-Cespedes M
. Lung cancer biology: a genetic and genomic perspective. Clin Transl Oncol. 2009; 11(5):263-9.
DOI: 10.1007/s12094-009-0353-7.
View
15.
Hancock R, Sahl H
. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006; 24(12):1551-7.
DOI: 10.1038/nbt1267.
View
16.
Roman M, Lopez I, Guruceaga E, Baraibar I, Ecay M, Collantes M
. Inhibitor of Differentiation-1 Sustains Mutant -Driven Progression, Maintenance, and Metastasis of Lung Adenocarcinoma via Regulation of a FOSL1 Network. Cancer Res. 2018; 79(3):625-638.
DOI: 10.1158/0008-5472.CAN-18-1479.
View
17.
Chen S, Xu M, Zhao J, Shen J, Li J, Liu Y
. MicroRNA-4516 suppresses pancreatic cancer development via negatively regulating orthodenticle homeobox 1. Int J Biol Sci. 2020; 16(12):2159-2169.
PMC: 7294951.
DOI: 10.7150/ijbs.45933.
View
18.
Dong Z, Luo W, Zhong H, Wang M, Song Y, Deng S
. Molecular cloning and characterization of antimicrobial peptides from skin of Hylarana guentheri. Acta Biochim Biophys Sin (Shanghai). 2017; 49(5):450-457.
DOI: 10.1093/abbs/gmx023.
View
19.
Guan X, Liang J, Xiang Y, Li T, Zhong X
. BARX1 repressed FOXF1 expression and activated Wnt/β-catenin signaling pathway to drive lung adenocarcinoma. Int J Biol Macromol. 2024; 261(Pt 2):129717.
DOI: 10.1016/j.ijbiomac.2024.129717.
View
20.
Kim J, Kim B, Jang Y, Kang S, Lee J, Cho N
. The stromal loss of miR-4516 promotes the FOSL1-dependent proliferation and malignancy of triple negative breast cancer. Cancer Lett. 2019; 469:256-265.
DOI: 10.1016/j.canlet.2019.10.039.
View