6.
Wilkinson I, Bottlinger M, El Harraoui Y, Sieber S
. Profiling the Heme-Binding Proteomes of Bacteria Using Chemical Proteomics. Angew Chem Int Ed Engl. 2022; 62(9):e202212111.
DOI: 10.1002/anie.202212111.
View
7.
Li J, Kogan M, Knight S, Pain D, Dancis A
. Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem. 1999; 274(46):33025-34.
DOI: 10.1074/jbc.274.46.33025.
View
8.
Barnett J, Scanlan D, Blindauer C
. Identification of major zinc-binding proteins from a marine cyanobacterium: insight into metal uptake in oligotrophic environments. Metallomics. 2014; 6(7):1254-68.
DOI: 10.1039/c4mt00048j.
View
9.
Stripp S, Goldet G, Brandmayr C, Sanganas O, Vincent K, Haumann M
. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci U S A. 2009; 106(41):17331-6.
PMC: 2765078.
DOI: 10.1073/pnas.0905343106.
View
10.
Albetel A, Outten C
. Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy. Methods Enzymol. 2018; 599:327-353.
PMC: 6427907.
DOI: 10.1016/bs.mie.2017.11.003.
View
11.
Kennedy M, Emptage M, Dreyer J, BEINERT H
. The role of iron in the activation-inactivation of aconitase. J Biol Chem. 1983; 258(18):11098-105.
View
12.
Braymer J, Freibert S, Rakwalska-Bange M, Lill R
. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim Biophys Acta Mol Cell Res. 2020; 1868(1):118863.
DOI: 10.1016/j.bbamcr.2020.118863.
View
13.
Gao F
. Iron-Sulfur Cluster Biogenesis and Iron Homeostasis in Cyanobacteria. Front Microbiol. 2020; 11:165.
PMC: 7058544.
DOI: 10.3389/fmicb.2020.00165.
View
14.
Waldron K, Tottey S, Yanagisawa S, Dennison C, Robinson N
. A periplasmic iron-binding protein contributes toward inward copper supply. J Biol Chem. 2006; 282(6):3837-46.
DOI: 10.1074/jbc.M609916200.
View
15.
Sofia H, Chen G, Hetzler B, MILLER N
. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 2001; 29(5):1097-106.
PMC: 29726.
DOI: 10.1093/nar/29.5.1097.
View
16.
Volbeda A, Charon M, Piras C, Hatchikian E, Frey M, Fontecilla-Camps J
. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995; 373(6515):580-7.
DOI: 10.1038/373580a0.
View
17.
Pierik A, Netz D, Lill R
. Analysis of iron-sulfur protein maturation in eukaryotes. Nat Protoc. 2009; 4(5):753-66.
DOI: 10.1038/nprot.2009.39.
View
18.
Sieker L, Adman E, Jensen L
. Structure of the Fe-S complex in a bacterial ferredoxin. Nature. 1972; 235(5332):40-2.
DOI: 10.1038/235040a0.
View
19.
Hagen W
. EPR spectroscopy of complex biological iron-sulfur systems. J Biol Inorg Chem. 2018; 23(4):623-634.
PMC: 6006208.
DOI: 10.1007/s00775-018-1543-y.
View
20.
BLOMSTROM D, KNIGHT Jr E, Phillips W, WEIHER J
. THE NATURE OF IRON IN FERREDOXIN. Proc Natl Acad Sci U S A. 1964; 51:1085-92.
PMC: 300217.
DOI: 10.1073/pnas.51.6.1085.
View