» Articles » PMID: 38923788

Solid-State Electrochemical Thermal Switches with Large Thermal Conductivity Switching Widths

Overview
Journal Adv Sci (Weinh)
Date 2024 Jun 26
PMID 38923788
Authors
Affiliations
Soon will be listed here.
Abstract

Thermal switches that switch the thermal conductivity (κ) of the active layers are attracting increasing attention as thermal management devices. For electrochemical thermal switches, several transition metal oxides (TMOs) are proposed as active layers. After electrochemical redox treatment, the crystal structure of the TMO is modulated, which results in the κ switching. However, the κ switching width is still small (<4 W m K). In this study, it demonstrates that LaNiO-based solid-state electrochemical thermal switches have a κ switching width of 4.3 W m K. Fully oxidized LaNiO (on state) has a κ of 6.0 W m K due to the large contribution of electron thermal conductivity (κ, 3.1 W m K). In contrast, reduced LaNiO (off state) has a κ of 1.7 W m K because the phonons are scattered by the oxygen vacancies. The LaNiO-based electrochemical thermal switch is cyclable of κ and the crystalline lattice of LaNiO. This electrochemical thermal switch may be a promising platform for next-generation devices such as thermal displays.

Citing Articles

High-performance solid-state electrochemical thermal switches with earth-abundant cerium oxide.

Jeong A, Yoshimura M, Kong H, Bian Z, Tam J, Feng B Sci Adv. 2025; 11(1):eads6137.

PMID: 39742486 PMC: 11691636. DOI: 10.1126/sciadv.ads6137.


Solid-State Electrochemical Thermal Switches with Large Thermal Conductivity Switching Widths.

Bian Z, Yoshimura M, Jeong A, Li H, Endo T, Matsuo Y Adv Sci (Weinh). 2024; 11(32):e2401331.

PMID: 38923788 PMC: 11348128. DOI: 10.1002/advs.202401331.

References
1.
Cho J, Losego M, Zhang H, Kim H, Zuo J, Petrov I . Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat Commun. 2014; 5:4035. DOI: 10.1038/ncomms5035. View

2.
Zhao L, Lo S, Zhang Y, Sun H, Tan G, Uher C . Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014; 508(7496):373-7. DOI: 10.1038/nature13184. View

3.
Liu C, Si Y, Zhang H, Wu C, Deng S, Dong Y . Low voltage-driven high-performance thermal switching in antiferroelectric PbZrO thin films. Science. 2023; 382(6676):1265-1269. DOI: 10.1126/science.adj9669. View

4.
Snyder G, Toberer E . Complex thermoelectric materials. Nat Mater. 2008; 7(2):105-14. DOI: 10.1038/nmat2090. View

5.
Li M, Wu H, Avery E, Qin Z, Goronzy D, Nguyen H . Electrically gated molecular thermal switch. Science. 2023; 382(6670):585-589. PMC: 11233110. DOI: 10.1126/science.abo4297. View