6.
Enomura M, Murata S, Terado Y, Tanaka M, Kobayashi S, Oba T
. Development of a Method for Scaffold-Free Elastic Cartilage Creation. Int J Mol Sci. 2020; 21(22).
PMC: 7698291.
DOI: 10.3390/ijms21228496.
View
7.
Tang P, Song P, Peng Z, Zhang B, Gui X, Wang Y
. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. Mater Sci Eng C Mater Biol Appl. 2021; 130:112423.
DOI: 10.1016/j.msec.2021.112423.
View
8.
Wei X, Zhou W, Tang Z, Wu H, Liu Y, Dong H
. Magnesium surface-activated 3D printed porous PEEK scaffolds for osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater. 2022; 20:16-28.
PMC: 9123089.
DOI: 10.1016/j.bioactmat.2022.05.011.
View
9.
Chang B, Cornett A, Nourmohammadi Z, Law J, Weld B, Crotts S
. Hybrid Three-Dimensional-Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications. Laryngoscope. 2020; 131(5):1008-1015.
PMC: 8021596.
DOI: 10.1002/lary.29114.
View
10.
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y
. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv. 2023; 69:108243.
DOI: 10.1016/j.biotechadv.2023.108243.
View
11.
Jang C, Koo Y, Kim G
. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydr Polym. 2020; 248:116776.
DOI: 10.1016/j.carbpol.2020.116776.
View
12.
Brennan J, Cornett A, Chang B, Crotts S, Nourmohammadi Z, Lombaert I
. Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. J Biomed Mater Res B Appl Biomater. 2020; 109(3):394-400.
PMC: 8130560.
DOI: 10.1002/jbm.b.34707.
View
13.
Visscher D, Lee H, van Zuijlen P, Helder M, Atala A, Yoo J
. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomater. 2020; 121:193-203.
PMC: 7855948.
DOI: 10.1016/j.actbio.2020.11.029.
View
14.
Zhang M, Xu C, Jiang L, Qin J
. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb). 2018; 7(6):1048-1060.
PMC: 6220735.
DOI: 10.1039/c8tx00156a.
View
15.
Mohamed E, Elshahat A, Hany H, Shafik F, Lashin R
. Segmentation of the 3D printed mirror image auricular model to ease sculpture of the costal cartilages in total auricular aesthetic reconstruction. Asian J Surg. 2023; 46(12):5429-5437.
DOI: 10.1016/j.asjsur.2023.05.040.
View
16.
Kerouredan O, Hakobyan D, Remy M, Ziane S, Dusserre N, Fricain J
. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication. 2019; 11(4):045002.
DOI: 10.1088/1758-5090/ab2620.
View
17.
Placone J, Engler A
. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications. Adv Healthc Mater. 2017; 7(8):e1701161.
PMC: 5954828.
DOI: 10.1002/adhm.201701161.
View
18.
Kim H, Jung S, Lee S, Lee H, Truong M, Kim H
. Fabrication and characterization of 3D-printed elastic auricular scaffolds: A pilot study. Laryngoscope. 2018; 129(2):351-357.
DOI: 10.1002/lary.27344.
View
19.
Mondschein R, Kanitkar A, Williams C, Verbridge S, Long T
. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials. 2017; 140:170-188.
DOI: 10.1016/j.biomaterials.2017.06.005.
View
20.
Yin J, Zhong J, Wang J, Wang Y, Li T, Wang L
. 3D-printed high-density polyethylene scaffolds with bioactive and antibacterial layer-by-layer modification for auricle reconstruction. Mater Today Bio. 2022; 16:100361.
PMC: 9352972.
DOI: 10.1016/j.mtbio.2022.100361.
View