6.
Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan D
. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed. 2008; 19(5):653-64.
PMC: 2698957.
DOI: 10.1163/156856208784089607.
View
7.
Hsu C, Serio A, Amdursky N, Besnard C, Stevens M
. Fabrication of Hemin-Doped Serum Albumin-Based Fibrous Scaffolds for Neural Tissue Engineering Applications. ACS Appl Mater Interfaces. 2018; 10(6):5305-5317.
PMC: 5814958.
DOI: 10.1021/acsami.7b18179.
View
8.
Son S, Franco R, Bae S, Min Y, Lee B
. Electrospun PLGA/gelatin fibrous tubes for the application of biodegradable intestinal stent in rat model. J Biomed Mater Res B Appl Biomater. 2013; 101(6):1095-105.
DOI: 10.1002/jbm.b.32923.
View
9.
Ruiter F, Alexander C, Rose F, Segal J
. A design of experiments approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies. Biomed Mater. 2017; 12(5):055009.
DOI: 10.1088/1748-605X/aa7b54.
View
10.
Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa P
. Protein encapsulation by electrospinning and electrospraying. J Control Release. 2020; 329:1172-1197.
DOI: 10.1016/j.jconrel.2020.10.046.
View
11.
Kyriakou S, Lubig A, Sandhoff C, Kuhn Y, Jockenhoevel S
. Influence of Diameter and Cyclic Mechanical Stimulation on the Beating Frequency of Myocardial Cell-Laden Fibers. Gels. 2023; 9(9).
PMC: 10528042.
DOI: 10.3390/gels9090677.
View
12.
Perez-Basterrechea M, Esteban M, Vega J, Obaya A
. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng. 2018; 115(12):3009-3029.
DOI: 10.1002/bit.26821.
View
13.
Niu Y, Stadler F, Fu M
. Biomimetic electrospun tubular PLLA/gelatin nanofiber scaffold promoting regeneration of sciatic nerve transection in SD rat. Mater Sci Eng C Mater Biol Appl. 2021; 121:111858.
DOI: 10.1016/j.msec.2020.111858.
View
14.
Kalluri L, Satpathy M, Duan Y
. Effect of Electrospinning Parameters on the Fiber Diameter and Morphology of PLGA Nanofibers. Dent Oral Biol Craniofacial Res. 2023; 4(2).
PMC: 10035641.
DOI: 10.31487/j.dobcr.2021.02.04.
View
15.
Boehm C, Donay C, Lubig A, Ruetten S, Sesa M, Fernandez-Colino A
. Bio-Inspired Fiber Reinforcement for Aortic Valves: Scaffold Production Process and Characterization. Bioengineering (Basel). 2023; 10(9).
PMC: 10525898.
DOI: 10.3390/bioengineering10091064.
View
16.
Wu T, Zheng H, Chen J, Wang Y, Sun B, Morsi Y
. Application of a bilayer tubular scaffold based on electrospun poly(l-lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering. J Mater Chem B. 2020; 5(1):139-150.
DOI: 10.1039/c6tb02484j.
View
17.
Kobayashi M, Lei N, Wang Q, Wu B, Dunn J
. Orthogonally oriented scaffolds with aligned fibers for engineering intestinal smooth muscle. Biomaterials. 2015; 61:75-84.
PMC: 4464968.
DOI: 10.1016/j.biomaterials.2015.05.023.
View
18.
Best C, Pepper V, Ohst D, Bodnyk K, Heuer E, Onwuka E
. Designing a tissue-engineered tracheal scaffold for preclinical evaluation. Int J Pediatr Otorhinolaryngol. 2017; 104:155-160.
PMC: 5922759.
DOI: 10.1016/j.ijporl.2017.10.036.
View
19.
Fernandez-Colino A, Wolf F, Rutten S, Rodriguez-Cabello J, Jockenhoevel S, Mela P
. Combining Catalyst-Free Click Chemistry with Coaxial Electrospinning to Obtain Long-Term, Water-Stable, Bioactive Elastin-Like Fibers for Tissue Engineering Applications. Macromol Biosci. 2018; 18(11):e1800147.
DOI: 10.1002/mabi.201800147.
View
20.
Madduri S, Gander B
. Growth factor delivery systems and repair strategies for damaged peripheral nerves. J Control Release. 2011; 161(2):274-82.
DOI: 10.1016/j.jconrel.2011.11.036.
View