» Articles » PMID: 18419943

Silk-based Electrospun Tubular Scaffolds for Tissue-engineered Vascular Grafts

Overview
Date 2008 Apr 19
PMID 18419943
Citations 72
Authors
Affiliations
Soon will be listed here.
Abstract

Electrospinning was used to fabricate non-woven nanofibrous tubular scaffolds from Bombyx mori silk fibroin using an all aqueous process. Cell studies and mechanical characterization tests were performed on the electrospun silk tubes to assess the viability of their usage in bioengineering small-diameter vascular grafts. Human endothelial cells and smooth muscle cells were successfully cultured on the electrospun silk. Mechanical characterization tests demonstrated burst strength sufficient to withstand arterial pressures and tensile properties comparable to native vessels. These cellular and mechanics outcomes demonstrate potential utility of these electrospun silk scaffolds for small-diameter vascular grafts.

Citing Articles

The Challenge of E-Spinning Sub-Millimeter Tubular Scaffolds-A Design-of-Experiments Study for Fiber Yield Improvement.

Sandhoff C, Loewen A, Kuhn Y, Vidal H, Ruetten S, Jockenhoevel S Polymers (Basel). 2024; 16(11).

PMID: 38891422 PMC: 11174914. DOI: 10.3390/polym16111475.


Manufacturing and validation of small-diameter vascular grafts: A mini review.

Hernandez-Sanchez D, Comtois-Bona M, Munoz M, Ruel M, Suuronen E, Alarcon E iScience. 2024; 27(6):109845.

PMID: 38799581 PMC: 11126982. DOI: 10.1016/j.isci.2024.109845.


Review of Spider Silk Applications in Biomedical and Tissue Engineering.

Brankovic M, Zivic F, Grujovic N, Stojadinovic I, Milenkovic S, Kotorcevic N Biomimetics (Basel). 2024; 9(3).

PMID: 38534854 PMC: 10967872. DOI: 10.3390/biomimetics9030169.


Effect of Sericin Content on the Structural Characteristics and Properties of New Silk Nonwoven Fabrics.

Kim Y, Bae Y, Jang M, Um I Biomolecules. 2023; 13(8).

PMID: 37627251 PMC: 10452508. DOI: 10.3390/biom13081186.


Local injection of adipose-derived mesenchymal stem cells in silk fibroin solution on the regeneration of lower esophageal sphincter in an animal model of GERD.

Zhang D, Wang Z, Ma L, Xu L, Fan S, Su Y Front Cell Dev Biol. 2023; 11:993741.

PMID: 37077418 PMC: 10106618. DOI: 10.3389/fcell.2023.993741.


References
1.
Santin M, Motta A, Freddi G, Cannas M . In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res. 1999; 46(3):382-9. DOI: 10.1002/(sici)1097-4636(19990905)46:3<382::aid-jbm11>3.0.co;2-r. View

2.
Sofia S, McCarthy M, Gronowicz G, Kaplan D . Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2000; 54(1):139-48. DOI: 10.1002/1097-4636(200101)54:1<139::aid-jbm17>3.0.co;2-7. View

3.
Min B, Lee G, Kim S, Nam Y, Lee T, Park W . Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2003; 25(7-8):1289-97. DOI: 10.1016/j.biomaterials.2003.08.045. View

4.
Marsano E, Corsini P, Arosio C, Boschi A, Mormino M, Freddi G . Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. Int J Biol Macromol. 2005; 37(4):179-88. DOI: 10.1016/j.ijbiomac.2005.10.005. View

5.
Adham M, Gournier J, Favre J, De La Roche E, Ducerf C, Baulieux J . Mechanical characteristics of fresh and frozen human descending thoracic aorta. J Surg Res. 1996; 64(1):32-4. DOI: 10.1006/jsre.1996.0302. View