» Articles » PMID: 3886627

Chloramphenicol-erythromycin Resistance Mutations in a 23S RRNA Gene of Escherichia Coli

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1985 May 1
PMID 3886627
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

Two chloramphenicol resistance mutations were isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Both mutations also confer resistance to 14-atom lactone ring macrolide antibiotics, but they do not confer resistance to 16-atom lactone ring macrolide antibiotics or other inhibitors of the large ribosomal subunit. Classic genetic and recombinant DNA methods were used to map the two mutations to 154-base-pair regions of the 23S RNA genes. DNA sequencing of these regions revealed that chloramphenicol-erythromycin resistance results from a guanine-to-adenine transition at position 2057 of the 23S RNA genes of both independently isolated mutants. These mutations affect a region of 23S RNA strongly implicated in peptidyl transfer and known to interact with a variety of peptidyl transferase inhibitors.

Citing Articles

Membranome-based identification of amino acid substitution in Haemophilus influenzae multidrug efflux pump HmrM for reduced chloramphenicol susceptibility.

Ho C, Chen C, Su P Arch Microbiol. 2024; 206(7):298.

PMID: 38860999 DOI: 10.1007/s00203-024-04025-0.


Targeted editing and evolution of engineered ribosomes in vivo by filtered editing.

Radford F, Elliott S, Schepartz A, Isaacs F Nat Commun. 2022; 13(1):180.

PMID: 35013328 PMC: 8748908. DOI: 10.1038/s41467-021-27836-x.


Synthetic auxotrophy remains stable after continuous evolution and in coculture with mammalian cells.

Kunjapur A, Napolitano M, Hysolli E, Noguera K, Appleton E, Schubert M Sci Adv. 2021; 7(27).

PMID: 34215581 PMC: 11060021. DOI: 10.1126/sciadv.abf5851.


Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli.

Cho H, Misra R J Bacteriol. 2021; 203(14):e0010921.

PMID: 33972351 PMC: 8223954. DOI: 10.1128/JB.00109-21.


Ribosome engineering reveals the importance of 5S rRNA autonomy for ribosome assembly.

Huang S, Aleksashin N, Loveland A, Klepacki D, Reier K, Kefi A Nat Commun. 2020; 11(1):2900.

PMID: 32518240 PMC: 7283268. DOI: 10.1038/s41467-020-16694-8.


References
1.
Celma M, MONRO R, Vazquez D . Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes. FEBS Lett. 1970; 6(3):273-277. DOI: 10.1016/0014-5793(70)80076-x. View

2.
GOTTESMAN M . Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J Biol Chem. 1967; 242(23):5564-71. View

3.
Fernandez-Munoz R, MONRO R, Vazquez D . Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol. lincomycin and erythromycin sites. Eur J Biochem. 1971; 23(1):185-93. DOI: 10.1111/j.1432-1033.1971.tb01607.x. View

4.
Pestka S . Studies on the formation of transfer ribonucleic acid-ribosome complexes. XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. Proc Natl Acad Sci U S A. 1969; 64(2):709-14. PMC: 223402. DOI: 10.1073/pnas.64.2.709. View

5.
Wallace B, Davis B . Cyclic blockade of initiation sites by streptomycin-damaged ribosomes in Escherichia coli: an explanation for dominance of sensitivity. J Mol Biol. 1973; 75(2):377-90. DOI: 10.1016/0022-2836(73)90028-4. View