» Articles » PMID: 35013328

Targeted Editing and Evolution of Engineered Ribosomes in Vivo by Filtered Editing

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jan 11
PMID 35013328
Authors
Affiliations
Soon will be listed here.
Abstract

Genome editing technologies introduce targeted chromosomal modifications in organisms yet are constrained by the inability to selectively modify repetitive genetic elements. Here we describe filtered editing, a genome editing method that embeds group 1 self-splicing introns into repetitive genetic elements to construct unique genetic addresses that can be selectively modified. We introduce intron-containing ribosomes into the E. coli genome and perform targeted modifications of these ribosomes using CRISPR/Cas9 and multiplex automated genome engineering. Self-splicing of introns post-transcription yields scarless RNA molecules, generating a complex library of targeted combinatorial variants. We use filtered editing to co-evolve the 16S rRNA to tune the ribosome's translational efficiency and the 23S rRNA to isolate antibiotic-resistant ribosome variants without interfering with native translation. This work sets the stage to engineer mutant ribosomes that polymerize abiological monomers with diverse chemistries and expands the scope of genome engineering for precise editing and evolution of repetitive DNA sequences.

Citing Articles

Ribosome Pool Engineering Increases Protein Biosynthesis Yields.

Kofman C, Willi J, Karim A, Jewett M ACS Cent Sci. 2024; 10(4):871-881.

PMID: 38680563 PMC: 11046459. DOI: 10.1021/acscentsci.3c01413.


CRISPR-Cas9-assisted genome editing in elevates the frequency of unintended mutations.

Widney K, Yang D, Rusch L, Copley S bioRxiv. 2024; .

PMID: 38562785 PMC: 10983943. DOI: 10.1101/2024.03.19.584922.


Genetic Circuit Design in Rhizobacteria.

Dundas C, Dinneny J Biodes Res. 2023; 2022:9858049.

PMID: 37850138 PMC: 10521742. DOI: 10.34133/2022/9858049.


Delving in folate metabolism in the parasite Leishmania major through a chemogenomic screen and methotrexate selection.

Bigot S, Leprohon P, Ouellette M PLoS Negl Trop Dis. 2023; 17(6):e0011458.

PMID: 37384801 PMC: 10337921. DOI: 10.1371/journal.pntd.0011458.


Mapping the in vivo fitness landscape of a tethered ribosome.

Radford F, Rinehart J, Isaacs F Sci Adv. 2023; 9(17):eade8934.

PMID: 37115918 PMC: 10146877. DOI: 10.1126/sciadv.ade8934.


References
1.
Urban A, Neukirchen S, Jaeger K . A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res. 1997; 25(11):2227-8. PMC: 146699. DOI: 10.1093/nar/25.11.2227. View

2.
Halperin S, Tou C, Wong E, Modavi C, Schaffer D, Dueber J . CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. 2018; 560(7717):248-252. DOI: 10.1038/s41586-018-0384-8. View

3.
Guo F, Cech T . In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron. RNA. 2002; 8(5):647-58. PMC: 1370285. DOI: 10.1017/s1355838202029011. View

4.
Tanner M, Cech T . Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. RNA. 1996; 2(1):74-83. PMC: 1369352. View

5.
Hui A, DE BOER H . Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci U S A. 1987; 84(14):4762-6. PMC: 305185. DOI: 10.1073/pnas.84.14.4762. View