6.
Avrani S, Bolotin E, Katz S, Hershberg R
. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion. Mol Biol Evol. 2017; 34(7):1758-1769.
PMC: 5455981.
DOI: 10.1093/molbev/msx118.
View
7.
Clarke P
. The metabolic versatility of pseudomonads. Antonie Van Leeuwenhoek. 1982; 48(2):105-30.
DOI: 10.1007/BF00405197.
View
8.
Katz S, Grajeda-Iglesias C, Agranovich B, Ghrayeb A, Abramovich I, Hilau S
. Metabolic adaptation to consume butyrate under prolonged resource exhaustion. PLoS Genet. 2023; 19(6):e1010812.
PMC: 10321620.
DOI: 10.1371/journal.pgen.1010812.
View
9.
Djebbi-Simmons D, Xu W, Janes M, King J
. Survival and inactivation of Salmonella enterica serovar Typhimurium on food contact surfaces during log, stationary and long-term stationary phases. Food Microbiol. 2019; 84:103272.
DOI: 10.1016/j.fm.2019.103272.
View
10.
Farrell M, Finkel S
. The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J Bacteriol. 2003; 185(24):7044-52.
PMC: 296246.
DOI: 10.1128/JB.185.24.7044-7052.2003.
View
11.
Sussman J, Simons E, Simons R
. Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol Microbiol. 1996; 21(2):347-60.
DOI: 10.1046/j.1365-2958.1996.6371354.x.
View
12.
Nakazawa T
. Travels of a Pseudomonas, from Japan around the world. Environ Microbiol. 2003; 4(12):782-6.
DOI: 10.1046/j.1462-2920.2002.00310.x.
View
13.
Manson M, Blank V, Brade G, Higgins C
. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature. 1986; 321(6067):253-6.
DOI: 10.1038/321253a0.
View
14.
Choi E, Cho M, Kim Y, Kim C, Lee K
. Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology (Reading). 2003; 149(Pt 3):795-805.
DOI: 10.1099/mic.0.26046-0.
View
15.
Conrad T, Frazier M, Joyce A, Cho B, Knight E, Lewis N
. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci U S A. 2010; 107(47):20500-5.
PMC: 2996682.
DOI: 10.1073/pnas.0911253107.
View
16.
Deatherage D, Barrick J
. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014; 1151:165-88.
PMC: 4239701.
DOI: 10.1007/978-1-4939-0554-6_12.
View
17.
Nelson K, Weinel C, Paulsen I, Dodson R, HILBERT H, Martins Dos Santos V
. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 2003; 4(12):799-808.
DOI: 10.1046/j.1462-2920.2002.00366.x.
View
18.
Zambrano M, Siegele D, Almiron M, Tormo A, Kolter R
. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science. 1993; 259(5102):1757-60.
DOI: 10.1126/science.7681219.
View
19.
Torrents E, Grinberg I, Gorovitz-Harris B, Lundstrom H, Borovok I, Aharonowitz Y
. NrdR controls differential expression of the Escherichia coli ribonucleotide reductase genes. J Bacteriol. 2007; 189(14):5012-21.
PMC: 1951866.
DOI: 10.1128/JB.00440-07.
View
20.
Eaton R
. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol. 1997; 179(10):3171-80.
PMC: 179094.
DOI: 10.1128/jb.179.10.3171-3180.1997.
View