6.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M
. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50.
PMC: 1239896.
DOI: 10.1073/pnas.0506580102.
View
7.
Perl A, Hanczko R, Telarico T, Oaks Z, Landas S
. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol Med. 2011; 17(7):395-403.
PMC: 3116035.
DOI: 10.1016/j.molmed.2011.01.014.
View
8.
Han H, Cho J, Lee S, Yun A, Kim H, Bae D
. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2017; 46(D1):D380-D386.
PMC: 5753191.
DOI: 10.1093/nar/gkx1013.
View
9.
Humbert M, Kovacs G, Hoeper M, Badagliacca R, Berger R, Brida M
. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022; 43(38):3618-3731.
DOI: 10.1093/eurheartj/ehac237.
View
10.
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y
. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol. 2023; 118(1):48.
PMC: 10632287.
DOI: 10.1007/s00395-023-01018-w.
View
11.
Mura M, Cecchini M, Joseph M, Granton J
. Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension. Respirology. 2019; 24(11):1104-1110.
DOI: 10.1111/resp.13557.
View
12.
Della Latta V, Cabiati M, Rocchiccioli S, Del Ry S, Morales M
. The role of the adenosinergic system in lung fibrosis. Pharmacol Res. 2013; 76:182-9.
DOI: 10.1016/j.phrs.2013.08.004.
View
13.
Newman A, Steen C, Liu C, Gentles A, Chaudhuri A, Scherer F
. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019; 37(7):773-782.
PMC: 6610714.
DOI: 10.1038/s41587-019-0114-2.
View
14.
Rehman J, Archer S
. A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension. Adv Exp Med Biol. 2010; 661:171-85.
DOI: 10.1007/978-1-60761-500-2_11.
View
15.
Leek J, Johnson W, Parker H, Jaffe A, Storey J
. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012; 28(6):882-3.
PMC: 3307112.
DOI: 10.1093/bioinformatics/bts034.
View
16.
Liao Y, Yang Y, Zhou G, Chen L, Yang Y, Guo S
. Anoikis and SPP1 in idiopathic pulmonary fibrosis: integrating bioinformatics, cell, and animal studies to explore prognostic biomarkers and PI3K/AKT signaling regulation. Expert Rev Clin Immunol. 2024; 20(6):679-693.
DOI: 10.1080/1744666X.2024.2315218.
View
17.
Wang R, Yuan T, Wang J, Chen Y, Zhao J, Li M
. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective. Pharmacol Res. 2022; 180:106238.
DOI: 10.1016/j.phrs.2022.106238.
View
18.
Kovacs L, Cao Y, Han W, Meadows L, Kovacs-Kasa A, Kondrikov D
. PFKFB3 in Smooth Muscle Promotes Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2019; 200(5):617-627.
PMC: 6727156.
DOI: 10.1164/rccm.201812-2290OC.
View
19.
Friedman J, Hastie T, Tibshirani R
. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010; 33(1):1-22.
PMC: 2929880.
View
20.
Lin W, Tang Y, Zhang M, Liang B, Wang M, Zha L
. Integrated Bioinformatic Analysis Reveals TXNRD1 as a Novel Biomarker and Potential Therapeutic Target in Idiopathic Pulmonary Arterial Hypertension. Front Med (Lausanne). 2022; 9:894584.
PMC: 9133447.
DOI: 10.3389/fmed.2022.894584.
View