» Articles » PMID: 38835246

Digital Twinning of Cardiac Electrophysiology for Congenital Heart Disease

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years, blending mechanistic knowledge with machine learning has had a major impact in digital healthcare. In this work, we introduce a computational pipeline to build certified digital replicas of cardiac electrophysiology in paediatric patients with congenital heart disease. We construct the patient-specific geometry by means of semi-automatic segmentation and meshing tools. We generate a dataset of electrophysiology simulations covering cell-to-organ level model parameters and using rigorous mathematical models based on differential equations. We previously proposed Branched Latent Neural Maps (BLNMs) as an accurate and efficient means to recapitulate complex physical processes in a neural network. Here, we employ BLNMs to encode the parametrized temporal dynamics of 12-lead electrocardiograms (ECGs). BLNMs act as a geometry-specific surrogate model of cardiac function for fast and robust parameter estimation to match clinical ECGs in paediatric patients. Identifiability and trustworthiness of calibrated model parameters are assessed by sensitivity analysis and uncertainty quantification.

Citing Articles

Artificial Intelligence in Pediatric Electrocardiography: A Comprehensive Review.

Leone D, OSullivan D, Bravo-Jaimes K Children (Basel). 2025; 12(1).

PMID: 39857856 PMC: 11763430. DOI: 10.3390/children12010025.


Digital Twins for Clinical and Operational Decision-Making: Scoping Review.

Riahi V, Diouf I, Khanna S, Boyle J, Hassanzadeh H J Med Internet Res. 2025; 27:e55015.

PMID: 39778199 PMC: 11754991. DOI: 10.2196/55015.


Cardiovascular care with digital twin technology in the era of generative artificial intelligence.

Thangaraj P, Benson S, Oikonomou E, Asselbergs F, Khera R Eur Heart J. 2024; .

PMID: 39322420 PMC: 11638093. DOI: 10.1093/eurheartj/ehae619.


Digital twinning of cardiac electrophysiology for congenital heart disease.

Salvador M, Kong F, Peirlinck M, Parker D, Chubb H, Dubin A J R Soc Interface. 2024; 21(215):20230729.

PMID: 38835246 PMC: 11285762. DOI: 10.1098/rsif.2023.0729.

References
1.
Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y . The 'Digital Twin' to enable the vision of precision cardiology. Eur Heart J. 2020; 41(48):4556-4564. PMC: 7774470. DOI: 10.1093/eurheartj/ehaa159. View

2.
Sahli Costabal F, Hurtado D, Kuhl E . Generating Purkinje networks in the human heart. J Biomech. 2016; 49(12):2455-65. PMC: 4917481. DOI: 10.1016/j.jbiomech.2015.12.025. View

3.
Motonaga K, Miyake C, Punn R, Rosenthal D, Dubin A . Insights into dyssynchrony in hypoplastic left heart syndrome. Heart Rhythm. 2012; 9(12):2010-5. DOI: 10.1016/j.hrthm.2012.08.031. View

4.
Strocchi M, Gillette K, Neic A, Elliott M, Wijesuriya N, Mehta V . Comparison between conduction system pacing and cardiac resynchronization therapy in right bundle branch block patients. Front Physiol. 2022; 13:1011566. PMC: 9532840. DOI: 10.3389/fphys.2022.1011566. View

5.
Sahli Costabal F, Yao J, Kuhl E . Predicting drug-induced arrhythmias by multiscale modeling. Int J Numer Method Biomed Eng. 2018; 34(5):e2964. DOI: 10.1002/cnm.2964. View