» Articles » PMID: 38824194

Skeletal Muscle Desmin Alterations Following Revascularization in Peripheral Artery Disease Claudicants

Abstract

Peripheral artery disease (PAD) is characterized by varying severity of arterial stenosis, exercise induced claudication, malperfused tissue precluding normal healing and skeletal muscle dysfunction. Revascularization interventions improve circulation, but post-reperfusion changes within the skeletal muscle are not well characterized. This study investigates if revascularization enhanced hemodynamics increases walking performance with concurrent improvement of mitochondrial function and reverses abnormal skeletal muscle morphological features that develop with PAD. Fifty-eight patients completed walking performance testing and muscle biopsy before and 6 months after revascularization procedures. Muscle fiber morphology, desmin structure, and mitochondria respiration assessments before and after the revascularization were evaluated. Revascularization improved limb hemodynamics, walking function, and muscle morphology. Qualitatively not all participants recovered normal structural architecture of desmin in the myopathic myofibers after revascularization. Heterogenous responses in the recovery of desmin structure following revascularization may be caused by other underlying factors not reversed with hemodynamic improvements. Revascularization interventions clinically improve patient walking ability and can reverse the multiple subcellular functional and structural abnormalities in muscle cells. Further study is needed to characterize desmin structural remodeling with improvements in skeletal muscle morphology and function.

Citing Articles

Ultrastructural alterations and mitochondrial dysfunction in skeletal muscle of peripheral artery disease patients: implications for early therapeutic interventions.

Wilburn D, Fletcher E, Papoutsi E, Bohannon W, Haynatzki G, Zechmann B EXCLI J. 2024; 23:1208-1225.

PMID: 39574966 PMC: 11579521. DOI: 10.17179/excli2024-7592.

References
1.
Cluff K, Miserlis D, Naganathan G, Pipinos I, Koutakis P, Samal A . Morphometric analysis of gastrocnemius muscle biopsies from patients with peripheral arterial disease: objective grading of muscle degeneration. Am J Physiol Regul Integr Comp Physiol. 2013; 305(3):R291-9. PMC: 3742999. DOI: 10.1152/ajpregu.00525.2012. View

2.
Watanabe K, Takahashi H, Watanabe T, Otaki Y, Kato S, Tamura H . Endovascular Revascularization Improves the Central Hemodynamics and Augmentation Index in Patients with Peripheral Artery Disease. Intern Med. 2019; 59(1):37-44. PMC: 6995708. DOI: 10.2169/internalmedicine.3413-19. View

3.
Farah B, Ritti-Dias R, Montgomery P, Casanegra A, Silva-Palacios F, Gardner A . Sedentary behavior is associated with impaired biomarkers in claudicants. J Vasc Surg. 2015; 63(3):657-63. PMC: 4769667. DOI: 10.1016/j.jvs.2015.09.018. View

4.
Koutakis P, Miserlis D, Myers S, Kim J, Zhu Z, Papoutsi E . Abnormal accumulation of desmin in gastrocnemius myofibers of patients with peripheral artery disease: associations with altered myofiber morphology and density, mitochondrial dysfunction and impaired limb function. J Histochem Cytochem. 2015; 63(4):256-69. PMC: 4374059. DOI: 10.1369/0022155415569348. View

5.
Weiss D, Casale G, Koutakis P, Nella A, Swanson S, Zhu Z . Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease. J Transl Med. 2013; 11:230. PMC: 3849592. DOI: 10.1186/1479-5876-11-230. View