6.
Becker J, Zhyhadlo Y, Butova E, Fokin A, R Schreiner P, Forster M
. Aerobic Aliphatic Hydroxylation Reactions by Copper Complexes: A Simple Clip-and-Cleave Concept. Chemistry. 2018; 24(58):15543-15549.
DOI: 10.1002/chem.201802607.
View
7.
McCann S, Stahl S
. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. Acc Chem Res. 2015; 48(6):1756-66.
DOI: 10.1021/acs.accounts.5b00060.
View
8.
Bhadra M, Lee J, Cowley R, Kim S, Siegler M, Solomon E
. Intramolecular Hydrogen Bonding Enhances Stability and Reactivity of Mononuclear Cupric Superoxide Complexes. J Am Chem Soc. 2018; 140(29):9042-9045.
PMC: 6217813.
DOI: 10.1021/jacs.8b04671.
View
9.
Yu Z, Chung C, Tang F, Brewer T, Au-Yeung H
. A modular trigger for the development of selective superoxide probes. Chem Commun (Camb). 2017; 53(72):10042-10045.
DOI: 10.1039/c7cc05405j.
View
10.
Trammell R, Rajabimoghadam K, Garcia-Bosch I
. Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O Model Systems to Organometallic Transformations. Chem Rev. 2019; 119(4):2954-3031.
PMC: 6571019.
DOI: 10.1021/acs.chemrev.8b00368.
View
11.
Quek S, Debnath S, Laxmi S, van Gastel M, Kramer T, England J
. Sterically Stabilized End-On Superoxocopper(II) Complexes and Mechanistic Insights into Their Reactivity with O-H, N-H, and C-H Substrates. J Am Chem Soc. 2021; 143(47):19731-19747.
DOI: 10.1021/jacs.1c07837.
View
12.
Fukuzumi S, Lee Y, Nam W
. Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Trans. 2019; 48(26):9469-9489.
DOI: 10.1039/c9dt01402k.
View
13.
Sarangi R
. X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M-O systems. Coord Chem Rev. 2013; 257(2):459-472.
PMC: 3601846.
DOI: 10.1016/j.ccr.2012.06.024.
View
14.
Kunishita A, Kubo M, Ishimaru H, Ogura T, Sugimoto H, Itoh S
. H2O2-reactivity of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine ligands with 6-phenyl substituents. Inorg Chem. 2008; 47(24):12032-9.
DOI: 10.1021/ic801568g.
View
15.
Ikbal S, Colomban C, Zhang D, Delecluse M, Brotin T, Dufaud V
. Bioinspired Oxidation of Methane in the Confined Spaces of Molecular Cages. Inorg Chem. 2019; 58(11):7220-7228.
DOI: 10.1021/acs.inorgchem.9b00199.
View
16.
Reichle A, Reiser O
. Light-induced homolysis of copper(ii)-complexes - a perspective for photocatalysis. Chem Sci. 2023; 14(17):4449-4462.
PMC: 10155906.
DOI: 10.1039/d3sc00388d.
View
17.
Liu X, Yu H, Huang J, Su J, Xue C, Zhou X
. Biomimetic catalytic aerobic oxidation of C-sp(3)-H bonds under mild conditions using galactose oxidase model compound CuL. Chem Sci. 2022; 13(33):9560-9568.
PMC: 9400635.
DOI: 10.1039/d2sc02606f.
View
18.
Becker J, Gupta P, Angersbach F, Tuczek F, Nather C, Holthausen M
. Selective Aromatic Hydroxylation with Dioxygen and Simple Copper Imine Complexes. Chemistry. 2015; 21(33):11735-44.
DOI: 10.1002/chem.201501003.
View
19.
Kim B, Karlin K
. Ligand-Copper(I) Primary O-Adducts: Design, Characterization, and Biological Significance of Cupric-Superoxides. Acc Chem Res. 2023; 56(16):2197-2212.
PMC: 11152209.
DOI: 10.1021/acs.accounts.3c00297.
View
20.
Saracini C, Liakos D, Zapata Rivera J, Neese F, Meyer G, Karlin K
. Excitation wavelength dependent O2 release from copper(II)-superoxide compounds: laser flash-photolysis experiments and theoretical studies. J Am Chem Soc. 2014; 136(4):1260-3.
PMC: 3936478.
DOI: 10.1021/ja4115314.
View