» Articles » PMID: 30698952

Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O Model Systems to Organometallic Transformations

Overview
Journal Chem Rev
Specialty Chemistry
Date 2019 Jan 31
PMID 30698952
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Copper is one of the most abundant and less toxic transition metals. Nature takes advantage of the bioavailability and rich redox chemistry of Cu to carry out oxygenase and oxidase organic transformations using O (or HO) as oxidant. Inspired by the reactivity of these Cu-dependent metalloenzymes, chemists have developed synthetic protocols to functionalize organic molecules under enviormentally benign conditions. Copper also promotes other transformations usually catalyzed by 4d and 5d transition metals (Pd, Pt, Rh, etc.) such as nitrene insertions or C-C and C-heteroatom coupling reactions. In this review, we summarized the most relevant research in which copper promotes or catalyzes the functionalization of organic molecules, including biological catalysis, bioinspired model systems, and organometallic reactivity. The reaction mechanisms by which these processes take place are discussed in detail.

Citing Articles

Multiligand-enabled, copper-catalyzed Hiyama coupling of arylsilanes with unactivated secondary alkyl halides: reaction development and mechanistic insights.

Zhou J, Zhang Z, Cao Y, Xie W Chem Sci. 2025; .

PMID: 39975764 PMC: 11833680. DOI: 10.1039/d4sc07441f.


Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations.

Lee S, Kim M, Han H, Son J Beilstein J Org Chem. 2025; 21:200-216.

PMID: 39877860 PMC: 11773186. DOI: 10.3762/bjoc.21.12.


Major-auxiliary cooperative metal pairs in MOFs enable cascade oxidation of KA oil to ε-caprolactone.

Xue G, Liu H, Liu W, Yang C, Ban Z, An P Nat Commun. 2024; 15(1):9659.

PMID: 39511213 PMC: 11543799. DOI: 10.1038/s41467-024-54064-w.


Cu-Promoted -Hydroxylation of sp Bonds with Concomitant Aromatic 1,2-Rearrangement Involving a Cu-oxyl-hydroxo Species.

Goswami S, Gill K, Yin X, Swart M, Garcia-Bosch I Inorg Chem. 2024; 63(43):20675-20688.

PMID: 39422540 PMC: 11523237. DOI: 10.1021/acs.inorgchem.4c03304.


Anion- and Water-facilitated Oxidative Carbon-Carbon Bond Cleavage and Diketonate Carboxylation in Cu(II) Chlorodiketonate Complexes.

Elsberg J, Borowski T, Reinheimer E, Berreau L Inorganica Chim Acta. 2024; 571.

PMID: 39399531 PMC: 11465868. DOI: 10.1016/j.ica.2024.122203.


References
1.
ITOH , Taki , Nakao , HOLLAND , Tolman , Que Jr L . Aliphatic Hydroxylation by a Bis(µ-oxo)dicopper(III) Complex. Angew Chem Int Ed Engl. 2000; 39(2):398-400. DOI: 10.1002/(sici)1521-3773(20000117)39:2<398::aid-anie398>3.0.co;2-2. View

2.
Santagostini L, Gullotti M, Monzani E, Casella L, Dillinger R, Tuczek F . Reversible dioxygen binding and phenol oxygenation in a tyrosinase model system. Chemistry. 2000; 6(3):519-22. DOI: 10.1002/(sici)1521-3765(20000204)6:3<519::aid-chem519>3.0.co;2-i. View

3.
Ohta T, Tachiyama T, Yoshizawa K, Yamabe T, Uchida T, Kitagawa T . Synthesis, structure, and H2O2-dependent catalytic functions of disulfide-bridged dicopper(I) and related thioether-copper(I) and thioether-copper(II) complexes. Inorg Chem. 2001; 39(19):4358-69. DOI: 10.1021/ic000018a. View

4.
Li X, Yang J, Kozlowski M . Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes. Org Lett. 2001; 3(8):1137-40. DOI: 10.1021/ol015595x. View

5.
Taki M, Itoh S, Fukuzumi S . C-H bond activation of external substrates with a bis(mu-oxo)dicopper(III) complex. J Am Chem Soc. 2001; 123(25):6203-4. DOI: 10.1021/ja015721s. View