6.
Tian L, Tan Y, Chen G, Wang G, Sun J, Ou S
. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit Rev Food Sci Nutr. 2019; 59(6):982-991.
DOI: 10.1080/10408398.2018.1533517.
View
7.
de Almeida A, de Oliveira J, da Silva Pontes L, de Souza Junior J, Goncalves T, Dantas S
. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxid Med Cell Longev. 2022; 2022:1225578.
PMC: 9605829.
DOI: 10.1155/2022/1225578.
View
8.
Yu Q, Yu F, Li Q, Zhang J, Peng Y, Wang X
. Anthocyanin-Rich Butterfly Pea Flower Extract Ameliorating Low-Grade Inflammation in a High-Fat-Diet and Lipopolysaccharide-Induced Mouse Model. J Agric Food Chem. 2023; 71(31):11941-11956.
DOI: 10.1021/acs.jafc.3c02696.
View
9.
Mezzetti A, Lapenna D, Romano F, Costantini F, Pierdomenico S, De Cesare D
. Systemic oxidative stress and its relationship with age and illness. Associazione Medica "Sabin". J Am Geriatr Soc. 1996; 44(7):823-7.
DOI: 10.1111/j.1532-5415.1996.tb03741.x.
View
10.
Han H, Liu Z, Yin J, Gao J, He L, Wang C
. D-Galactose Induces Chronic Oxidative Stress and Alters Gut Microbiota in Weaned Piglets. Front Physiol. 2021; 12:634283.
PMC: 8060641.
DOI: 10.3389/fphys.2021.634283.
View
11.
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D
. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018; 13:757-772.
PMC: 5927356.
DOI: 10.2147/CIA.S158513.
View
12.
Peng W, Li Z, Cai D, Yi X, Zhang J, Zhong G
. Gender differences pharmacokinetics, bioavailability, hepatic metabolism and metabolism studies of Pinnatifolone A, a sesquiterpenoid compound, in rats by LC-MS/MS and UHPLC-Q-TOF-MS/MS. Phytomedicine. 2023; 109:154544.
DOI: 10.1016/j.phymed.2022.154544.
View
13.
Guo F, Xiong H, Wang X, Jiang L, Yu N, Hu Z
. Phenolics of Green Pea ( L.) Hulls, Their Plasma and Urinary Metabolites, Bioavailability, and in Vivo Antioxidant Activities in a Rat Model. J Agric Food Chem. 2019; 67(43):11955-11968.
DOI: 10.1021/acs.jafc.9b04501.
View
14.
Han H, Liu C, Gao W, Li Z, Qin G, Qi S
. Anthocyanins Are Converted into Anthocyanidins and Phenolic Acids and Effectively Absorbed in the Jejunum and Ileum. J Agric Food Chem. 2021; 69(3):992-1002.
DOI: 10.1021/acs.jafc.0c07771.
View
15.
Vidana Gamage G, Lim Y, Choo W
. Anthocyanins From Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. Front Plant Sci. 2022; 12:792303.
PMC: 8718764.
DOI: 10.3389/fpls.2021.792303.
View
16.
Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y
. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. Evid Based Complement Alternat Med. 2021; 2021:6139308.
PMC: 8592717.
DOI: 10.1155/2021/6139308.
View
17.
Barve A, Chen C, Hebbar V, Desiderio J, Saw C, Kong A
. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos. 2009; 30(7):356-65.
PMC: 3580176.
DOI: 10.1002/bdd.677.
View
18.
Rehman S, Shah S, Ali T, Chung J, Kim M
. Anthocyanins Reversed D-Galactose-Induced Oxidative Stress and Neuroinflammation Mediated Cognitive Impairment in Adult Rats. Mol Neurobiol. 2016; 54(1):255-271.
DOI: 10.1007/s12035-015-9604-5.
View
19.
Houghton A, Appelhagen I, Martin C
. Natural Blues: Structure Meets Function in Anthocyanins. Plants (Basel). 2021; 10(4).
PMC: 8068391.
DOI: 10.3390/plants10040726.
View
20.
Tang Y, Zhang B, Li X, Chen P, Zhang H, Liu R
. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects. J Agric Food Chem. 2016; 64(8):1712-9.
DOI: 10.1021/acs.jafc.5b05761.
View