6.
Lin P, Xie C, Liu T, Yuan X, Luo K, Yang Q
. Rational construction of reliable fluorescent probes for rapid detection and imaging evaluation of hazardous thiophenol in real-food and biosystems. Food Chem. 2023; 432:137264.
DOI: 10.1016/j.foodchem.2023.137264.
View
7.
Singh H, Thakur B, Bhardwaj S, Khatri M, Kim K, Bhardwaj N
. Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: A review. Food Chem. 2023; 426:136657.
DOI: 10.1016/j.foodchem.2023.136657.
View
8.
Yao Z, Liu H, Liu Y, Diao Y, Hu G, Zhang Q
. FRET-based fluorometry assay for curcumin detecting using PVP-templated Cu NCs. Talanta. 2020; 223(Pt 2):121741.
DOI: 10.1016/j.talanta.2020.121741.
View
9.
Han Y, Yang W, Luo X, He X, Zhao H, Tang W
. Carbon dots based ratiometric fluorescent sensing platform for food safety. Crit Rev Food Sci Nutr. 2020; 62(1):244-260.
DOI: 10.1080/10408398.2020.1814197.
View
10.
Wang X, Yan F, Chen Y, Bai X, Fu Y
. Localized electron-accepted yellow-emission carbon dots encapsulated in UiO-66 for efficient visible-light driven photocatalytic activity. Chemosphere. 2023; 343:140250.
DOI: 10.1016/j.chemosphere.2023.140250.
View
11.
Yousefi R, Asgari S, Banitalebi Dehkordi A, Mohammadi Ziarani G, Badiei A, Mohajer F
. MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. Environ Res. 2023; 226:115664.
DOI: 10.1016/j.envres.2023.115664.
View
12.
Shu Y, Ye Q, Dai T, Xu Q, Hu X
. Encapsulation of Luminescent Guests to Construct Luminescent Metal-Organic Frameworks for Chemical Sensing. ACS Sens. 2021; 6(3):641-658.
DOI: 10.1021/acssensors.0c02562.
View
13.
Hu F, Fu Q, Li Y, Yan C, Xiao D, Ju P
. Zinc-doped carbon quantum dots-based ratiometric fluorescence probe for rapid, specific, and visual determination of tetracycline hydrochloride. Food Chem. 2023; 431:137097.
DOI: 10.1016/j.foodchem.2023.137097.
View
14.
Tang S, Wang Y, Guo G, Li T, Xing H, Hu H
. Activated cascade effect for dual-mode ratiometric and smartphone-assisted visual detection of curcumin and F based on nitrogen-doped carbon dots. Sci Total Environ. 2023; 872:162277.
DOI: 10.1016/j.scitotenv.2023.162277.
View
15.
Yue J, Song L, Ding X, Wang Y, Yang P, Ma Y
. Ratiometric Fluorescent pH Sensor Based on a Tunable Multivariate Covalent Organic Framework. Anal Chem. 2022; 94(31):11062-11069.
DOI: 10.1021/acs.analchem.2c01999.
View
16.
Shang Y, Sun H, Yu R, Zhang F, Liang X, Li H
. Quantitative Time-Resolved Visualization of Catalytic Degradation Reactions of Environmental Pollutants by Integrating Single-Drop Microextraction and Fluorescence Sensing. Environ Sci Technol. 2023; 57(30):11231-11240.
DOI: 10.1021/acs.est.3c02344.
View
17.
Baig M, Chen Y
. Bright carbon dots as fluorescence sensing agents for bacteria and curcumin. J Colloid Interface Sci. 2017; 501:341-349.
DOI: 10.1016/j.jcis.2017.04.045.
View
18.
Fan Y, Shen L, Liu Y, Hu Y, Long W, Fu H
. A sensitized ratiometric fluorescence probe based on N/S doped carbon dots and mercaptoacetic acid capped CdTe quantum dots for the highly selective detection of multiple tetracycline antibiotics in food. Food Chem. 2023; 421:136105.
DOI: 10.1016/j.foodchem.2023.136105.
View
19.
Zhang L, Xu Y, Xu J, Zhang H, Zhao T, Jia L
. Intelligent multicolor nano-sensor based on nontoxic dual fluoroprobe and MOFs for colorful consecutive detection of Hg and cysteine. J Hazard Mater. 2022; 430:128478.
DOI: 10.1016/j.jhazmat.2022.128478.
View
20.
Chen D, Wu Z, Zhang Y, Li D, Wei J, Jiao T
. Boric acid group-functional Tb-MOF as a fluorescent and captured probe for the highly sensitive and selective determination of propyl gallate in edible oils. Food Chem. 2023; 418:136012.
DOI: 10.1016/j.foodchem.2023.136012.
View