6.
Sanchez-Casalongue M, Lee J, Diamond A, Shuldiner S, Moir R, Willis I
. Differential phosphorylation of a regulatory subunit of protein kinase CK2 by target of rapamycin complex 1 signaling and the Cdc-like kinase Kns1. J Biol Chem. 2015; 290(11):7221-33.
PMC: 4358141.
DOI: 10.1074/jbc.M114.626523.
View
7.
Banks I, Specht C, Donlin M, Gerik K, Levitz S, Lodge J
. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell. 2005; 4(11):1902-12.
PMC: 1287864.
DOI: 10.1128/EC.4.11.1902-1912.2005.
View
8.
Ko Y, Yu Y, Kim G, Lee G, Maeng P, Kim S
. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot Cell. 2009; 8(8):1197-217.
PMC: 2725552.
DOI: 10.1128/EC.00120-09.
View
9.
Talmadge C, Finkernagel S, Sumegi J, Sciorra L, Rabinow L
. Chromosomal mapping of three human LAMMER protein-kinase-encoding genes. Hum Genet. 1998; 103(4):523-4.
DOI: 10.1007/s004390050861.
View
10.
Cramer K, Gerrald Q, Nichols C, Price M, Alspaugh J
. Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans. Eukaryot Cell. 2006; 5(7):1147-56.
PMC: 1489281.
DOI: 10.1128/EC.00145-06.
View
11.
Reese A, Yoneda A, Breger J, Beauvais A, Liu H, Griffith C
. Loss of cell wall alpha(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol Microbiol. 2007; 63(5):1385-98.
PMC: 1864955.
DOI: 10.1111/j.1365-2958.2006.05551.x.
View
12.
Chen Y, Shi Z, Strickland A, Shi M
. Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel). 2022; 8(10).
PMC: 9605252.
DOI: 10.3390/jof8101069.
View
13.
Hanes J, von der Kammer H, Klaudiny J, Scheit K
. Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases. J Mol Biol. 1994; 244(5):665-72.
DOI: 10.1006/jmbi.1994.1763.
View
14.
Myers M, Murphy M, Landreth G
. The dual-specificity CLK kinase induces neuronal differentiation of PC12 cells. Mol Cell Biol. 1994; 14(10):6954-61.
PMC: 359226.
DOI: 10.1128/mcb.14.10.6954-6961.1994.
View
15.
Kmetzsch L, Staats C, Simon E, Fonseca F, Oliveira D, Joffe L
. The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans. Fungal Genet Biol. 2010; 48(2):192-9.
DOI: 10.1016/j.fgb.2010.07.011.
View
16.
Bender J, Fink G
. AFC1, a LAMMER kinase from Arabidopsis thaliana, activates STE12-dependent processes in yeast. Proc Natl Acad Sci U S A. 1994; 91(25):12105-9.
PMC: 45385.
DOI: 10.1073/pnas.91.25.12105.
View
17.
Fan Y, Lin X
. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the Species Complex. Genetics. 2018; 208(4):1357-1372.
PMC: 5887135.
DOI: 10.1534/genetics.117.300656.
View
18.
Joseph-Horne T, Hollomon D, Loeffler R, Kelly S
. Cross-resistance to polyene and azole drugs in Cryptococcus neoformans. Antimicrob Agents Chemother. 1995; 39(7):1526-9.
PMC: 162775.
DOI: 10.1128/AAC.39.7.1526.
View
19.
Jung K, Strain A, Nielsen K, Jung K, Bahn Y
. Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet Biol. 2012; 49(4):332-45.
PMC: 3319253.
DOI: 10.1016/j.fgb.2012.02.001.
View
20.
Kim K, Cho Y, Kang W, Kim J, Byun K, Park Y
. Negative regulation of filamentous growth and flocculation by Lkh1, a fission yeast LAMMER kinase homolog. Biochem Biophys Res Commun. 2001; 289(5):1237-42.
DOI: 10.1006/bbrc.2001.6128.
View