6.
Carneiro L, Yu L, Dupree P, Ward R
. Characterization of a β-galactosidase from Bacillus subtilis with transgalactosylation activity. Int J Biol Macromol. 2018; 120(Pt A):279-287.
DOI: 10.1016/j.ijbiomac.2018.07.116.
View
7.
Cheng W, Wang L, Jiang Y, Bai X, Chu J, Li Q
. Structural insights into the substrate specificity of Streptococcus pneumoniae β(1,3)-galactosidase BgaC. J Biol Chem. 2012; 287(27):22910-8.
PMC: 3391139.
DOI: 10.1074/jbc.M112.367128.
View
8.
Damin B, Kovalski F, Fischer J, Piccin J, Dettmer A
. Challenges and perspectives of the β-galactosidase enzyme. Appl Microbiol Biotechnol. 2021; 105(13):5281-5298.
DOI: 10.1007/s00253-021-11423-7.
View
9.
Guerrero C, Vera C, Illanes A
. Optimisation of synthesis of oligosaccharides derived from lactulose (fructosyl-galacto-oligosaccharides) with β-galactosidases of different origin. Food Chem. 2013; 138(4):2225-32.
DOI: 10.1016/j.foodchem.2012.10.128.
View
10.
Iqbal S, Nguyen T, Nguyen H, Nguyen T, Maischberger T, Kittl R
. Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. J Agric Food Chem. 2011; 59(8):3803-11.
DOI: 10.1021/jf103832q.
View
11.
Kolev P, Rocha-Mendoza D, Ruiz-Ramirez S, Ortega-Anaya J, Jimenez-Flores R, Garcia-Cano I
. Screening and characterization of β-galactosidase activity in lactic acid bacteria for the valorization of acid whey. JDS Commun. 2022; 3(1):1-6.
PMC: 9623626.
DOI: 10.3168/jdsc.2021-0145.
View
12.
Kondo T, Nishimura Y, Matsuyama K, Ishimaru M, Nakazawa M, Ueda M
. Characterization of three GH35 β-galactosidases, enzymes able to shave galactosyl residues linked to rhamnogalacturonan in pectin, from Penicillium chrysogenum 31B. Appl Microbiol Biotechnol. 2019; 104(3):1135-1148.
DOI: 10.1007/s00253-019-10299-y.
View
13.
Li Y, Lu L, Wang H, Xu X, Xiao M
. Cell surface engineering of a beta-galactosidase for galactooligosaccharide synthesis. Appl Environ Microbiol. 2009; 75(18):5938-42.
PMC: 2747861.
DOI: 10.1128/AEM.00326-09.
View
14.
Li A, Zheng J, Han X, Yang S, Cheng S, Zhao J
. Advances in Low-Lactose/Lactose-Free Dairy Products and Their Production. Foods. 2023; 12(13).
PMC: 10340681.
DOI: 10.3390/foods12132553.
View
15.
Liu Y, Chen Z, Jiang Z, Yan Q, Yang S
. Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. Int J Biol Macromol. 2017; 104(Pt A):1055-1063.
DOI: 10.1016/j.ijbiomac.2017.06.073.
View
16.
Maksimainen M, Lampio A, Mertanen M, Turunen O, Rouvinen J
. The crystal structure of acidic β-galactosidase from Aspergillus oryzae. Int J Biol Macromol. 2013; 60:109-15.
DOI: 10.1016/j.ijbiomac.2013.05.003.
View
17.
Misselwitz B, Butter M, Verbeke K, Fox M
. Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. Gut. 2019; 68(11):2080-2091.
PMC: 6839734.
DOI: 10.1136/gutjnl-2019-318404.
View
18.
Rico-Diaz A, Ramirez-Escudero M, Vizoso-Vazquez A, Cerdan M, Becerra M, Sanz-Aparicio J
. Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages. FEBS J. 2017; 284(12):1815-1829.
DOI: 10.1111/febs.14083.
View
19.
Rojas A, Nagem R, Neustroev K, Arand M, Adamska M, Eneyskaya E
. Crystal structures of beta-galactosidase from Penicillium sp. and its complex with galactose. J Mol Biol. 2004; 343(5):1281-92.
DOI: 10.1016/j.jmb.2004.09.012.
View
20.
Singh P, Arora S, Rao P, Kathuria D, Sharma V, Singh A
. Effect of process parameters on the β-galactosidase hydrolysis of lactose and galactooligosaccharide formation in concentrated skim milk. Food Chem. 2022; 393:133355.
DOI: 10.1016/j.foodchem.2022.133355.
View