» Articles » PMID: 38760822

Methylmalonic Acidemia Triggers Lysosomal-autophagy Dysfunctions

Abstract

Background: Methylmalonic acidemia (MMA) is a rare inborn error of propionate metabolism caused by deficiency of the mitochondrial methylmalonyl-CoA mutase (MUT) enzyme. As matter of fact, MMA patients manifest impairment of the primary metabolic network with profound damages that involve several cell components, many of which have not been discovered yet. We employed cellular models and patients-derived fibroblasts to refine and uncover new pathologic mechanisms connected with MUT deficiency through the combination of multi-proteomics and bioinformatics approaches.

Results: Our data show that MUT deficiency is connected with profound proteome dysregulations, revealing molecular actors involved in lysosome and autophagy functioning. To elucidate the effects of defective MUT on lysosomal and autophagy regulation, we analyzed the morphology and functionality of MMA-lysosomes that showed deep alterations, thus corroborating omics data. Lysosomes of MMA cells present as enlarged vacuoles with low degradative capabilities. Notwithstanding, treatment with an anti-propionigenic drug is capable of totally rescuing lysosomal morphology and functional activity in MUT-deficient cells. These results indicate a strict connection between MUT deficiency and lysosomal-autophagy dysfunction, providing promising therapeutic perspectives for MMA.

Conclusions: Defective homeostatic mechanisms in the regulation of autophagy and lysosome functions have been demonstrated in MUT-deficient cells. Our data prove that MMA triggers such dysfunctions impacting on autophagosome-lysosome fusion and lysosomal activity.

Citing Articles

Neuroglobin regulates autophagy through mTORC1/RAPTOR/ULK-1 pathway in human neuroblastoma cells.

Manganelli V, Costanzo M, Caissutti D, Salvatori I, Candelise N, Montalesi E Sci Rep. 2025; 15(1):7642.

PMID: 40038411 PMC: 11880548. DOI: 10.1038/s41598-025-91701-w.


Editorial: Omics in endocrinology: from biomarker discovery to targeting therapeutic strategies.

Costanzo M, Aleidi S, Abdel Rahman A Front Mol Biosci. 2025; 12:1567250.

PMID: 40017631 PMC: 11865747. DOI: 10.3389/fmolb.2025.1567250.


Enhancing Biomedicine: Proteomics and Metabolomics in Action.

Costanzo M, Caterino M, Santorelli L Proteomes. 2025; 13(1.

PMID: 39846636 PMC: 11755564. DOI: 10.3390/proteomes13010005.


Untargeted metabolomics profiling of gestational diabetes mellitus: insights into early diagnosis and metabolic pathway alterations.

Aleidi S, Al Fahmawi H, AlMalki R, Al Mogren M, Alwahsh M, Mujammami M Front Mol Biosci. 2025; 11:1485587.

PMID: 39764206 PMC: 11700826. DOI: 10.3389/fmolb.2024.1485587.


Metabolomic profiling of saliva from cystic fibrosis patients.

Caterino M, Costanzo M, Castaldo A, Iacotucci P, Carnovale V, Ruoppolo M Sci Rep. 2025; 15(1):479.

PMID: 39747338 PMC: 11696459. DOI: 10.1038/s41598-024-84191-9.


References
1.
Wang B, Martini-Stoica H, Qi C, Lu T, Wang S, Xiong W . TFEB-vacuolar ATPase signaling regulates lysosomal function and microglial activation in tauopathy. Nat Neurosci. 2023; 27(1):48-62. DOI: 10.1038/s41593-023-01494-2. View

2.
Sardiello M, Palmieri M, di Ronza A, Medina D, Valenza M, Gennarino V . A gene network regulating lysosomal biogenesis and function. Science. 2009; 325(5939):473-7. DOI: 10.1126/science.1174447. View

3.
Li W, He P, Huang Y, Li Y, Lu J, Li M . Selective autophagy of intracellular organelles: recent research advances. Theranostics. 2021; 11(1):222-256. PMC: 7681076. DOI: 10.7150/thno.49860. View

4.
Andrejewski N, Punnonen E, Guhde G, Tanaka Y, Lullmann-Rauch R, Hartmann D . Normal lysosomal morphology and function in LAMP-1-deficient mice. J Biol Chem. 1999; 274(18):12692-701. DOI: 10.1074/jbc.274.18.12692. View

5.
MacLean B, Tomazela D, Shulman N, Chambers M, Finney G, Frewen B . Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010; 26(7):966-8. PMC: 2844992. DOI: 10.1093/bioinformatics/btq054. View