6.
Krishnamurty A, Turley S
. Lymph node stromal cells: cartographers of the immune system. Nat Immunol. 2020; 21(4):369-380.
DOI: 10.1038/s41590-020-0635-3.
View
7.
Ye Y, Gaugler B, Mohty M, Malard F
. Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin Transl Immunology. 2020; 9(5):e1139.
PMC: 7248678.
DOI: 10.1002/cti2.1139.
View
8.
McLellan A, Starling G, Hart D
. Isolation of human blood dendritic cells by discontinuous Nycodenz gradient centrifugation. J Immunol Methods. 1995; 184(1):81-9.
DOI: 10.1016/0022-1759(95)00077-n.
View
9.
Katakai T, Hara T, Lee J, Gonda H, Sugai M, Shimizu A
. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol. 2004; 16(8):1133-42.
DOI: 10.1093/intimm/dxh113.
View
10.
Skulska K, Wegrzyn A, Chelmonska-Soyta A, Chodaczek G
. Impact of tissue enzymatic digestion on analysis of immune cells in mouse reproductive mucosa with a focus on γδ T cells. J Immunol Methods. 2019; 474:112665.
DOI: 10.1016/j.jim.2019.112665.
View
11.
Zipursky A, Bow E, Seshadri R, Brown E
. Leukocyte density and volume in normal subjects and in patients with acute lymphoblastic leukemia. Blood. 1976; 48(3):361-71.
View
12.
Zhang Y, Poon W, Sefton E, Chan W
. Suppressing Subcapsular Sinus Macrophages Enhances Transport of Nanovaccines to Lymph Node Follicles for Robust Humoral Immunity. ACS Nano. 2020; 14(8):9478-9490.
DOI: 10.1021/acsnano.0c02240.
View
13.
Scapini P, Marini O, Tecchio C, Cassatella M
. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol Rev. 2016; 273(1):48-60.
DOI: 10.1111/imr.12448.
View
14.
Junt T, Moseman E, Iannacone M, Massberg S, Lang P, Boes M
. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature. 2007; 450(7166):110-4.
DOI: 10.1038/nature06287.
View
15.
Moussion C, Girard J
. Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature. 2011; 479(7374):542-6.
DOI: 10.1038/nature10540.
View
16.
Becerril-Garcia M, Yam-Puc J, Maqueda-Alfaro R, Beristain-Covarrubias N, Heras-Chavarria M, Gallegos-Hernandez I
. Langerhans Cells From Mice at Birth Express Endocytic- and Pattern Recognition-Receptors, Migrate to Draining Lymph Nodes Ferrying Antigen and Activate Neonatal T Cells . Front Immunol. 2020; 11:744.
PMC: 7197463.
DOI: 10.3389/fimmu.2020.00744.
View
17.
Carmen J, Shrivastava S, Lu Z, Anderson A, Morrison E, Sankhala R
. SARS-CoV-2 ferritin nanoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses. NPJ Vaccines. 2021; 6(1):151.
PMC: 8668928.
DOI: 10.1038/s41541-021-00414-4.
View
18.
Guilliams M, van de Laar L
. A Hitchhiker's Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Front Immunol. 2015; 6:406.
PMC: 4531301.
DOI: 10.3389/fimmu.2015.00406.
View
19.
Eskandar S, Bezemer R, Eggen B, Prins J
. Cold Mechanical Isolation of Placental Macrophages as a Method to Limit Procedure-Induced Activation of Macrophages. J Immunol. 2023; 211(12):1868-1876.
PMC: 10694029.
DOI: 10.4049/jimmunol.2300379.
View
20.
Gervassi A, Lejarcegui N, Dross S, Jacobson A, Itaya G, Kidzeru E
. Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses. PLoS One. 2014; 9(9):e107816.
PMC: 4172591.
DOI: 10.1371/journal.pone.0107816.
View