» Articles » PMID: 38755224

Taking a Shortcut: What Mechanisms Do Fish Use?

Overview
Journal Commun Biol
Specialty Biology
Date 2024 May 16
PMID 38755224
Authors
Affiliations
Soon will be listed here.
Abstract

Path integration is a powerful navigational mechanism whereby individuals continuously update their distance and angular vector of movement to calculate their position in relation to their departure location, allowing them to return along the most direct route even across unfamiliar terrain. While path integration has been investigated in several terrestrial animals, it has never been demonstrated in aquatic vertebrates, where movement occurs through volumetric space and sensory cues available for navigation are likely to differ substantially from those in terrestrial environments. By performing displacement experiments with Lamprologus ocellatus, we show evidence consistent with fish using path integration to navigate alongside other mechanisms (allothetic place cues and route recapitulation). These results indicate that the use of path integration is likely to be deeply rooted within the vertebrate phylogeny irrespective of the environment, and suggests that fish may possess a spatial encoding system that parallels that of mammals.

Citing Articles

Taking a shortcut: what mechanisms do fish use?.

Sibeaux A, Newport C, Green J, Karlsson C, Engelmann J, Burt de Perera T Commun Biol. 2024; 7(1):578.

PMID: 38755224 PMC: 11099040. DOI: 10.1038/s42003-024-06179-5.

References
1.
Sovrano V, Baratti G, Lee S . The role of learning and environmental geometry in landmark-based spatial reorientation of fish (Xenotoca eiseni). PLoS One. 2020; 15(3):e0229608. PMC: 7053775. DOI: 10.1371/journal.pone.0229608. View

2.
Sibeaux A, Newport C, Green J, Karlsson C, Engelmann J, Burt de Perera T . Taking a shortcut: what mechanisms do fish use?. Commun Biol. 2024; 7(1):578. PMC: 11099040. DOI: 10.1038/s42003-024-06179-5. View

3.
Wystrach A, Mangan M, Webb B . Optimal cue integration in ants. Proc Biol Sci. 2015; 282(1816):20151484. PMC: 4614770. DOI: 10.1098/rspb.2015.1484. View

4.
Sibeaux A, Karlsson C, Newport C, Burt de Perera T . Distance estimation in the goldfish (). Proc Biol Sci. 2022; 289(1984):20221220. PMC: 9554733. DOI: 10.1098/rspb.2022.1220. View

5.
Zhao M, Warren W . How you get there from here: interaction of visual landmarks and path integration in human navigation. Psychol Sci. 2015; 26(6):915-24. DOI: 10.1177/0956797615574952. View