The Landscape of Rare Genetic Variation Associated with Inflammatory Bowel Disease and Parkinson's Disease Comorbidity
Overview
Authors
Affiliations
Background: Inflammatory bowel disease (IBD) and Parkinson's disease (PD) are chronic disorders that have been suggested to share common pathophysiological processes. LRRK2 has been implicated as playing a role in both diseases. Exploring the genetic basis of the IBD-PD comorbidity through studying high-impact rare genetic variants can facilitate the identification of the novel shared genetic factors underlying this comorbidity.
Methods: We analyzed whole exomes from the BioMe BioBank and UK Biobank, and whole genomes from a cohort of 67 European patients diagnosed with both IBD and PD to examine the effects of LRRK2 missense variants on IBD, PD and their co-occurrence (IBD-PD). We performed optimized sequence kernel association test (SKAT-O) and network-based heterogeneity clustering (NHC) analyses using high-impact rare variants in the IBD-PD cohort to identify novel candidate genes, which we further prioritized by biological relatedness approaches. We conducted phenome-wide association studies (PheWAS) employing BioMe BioBank and UK Biobank whole exomes to estimate the genetic relevance of the 14 prioritized genes to IBD-PD.
Results: The analysis of LRRK2 missense variants revealed significant associations of the G2019S and N2081D variants with IBD-PD in addition to several other variants as potential contributors to increased or decreased IBD-PD risk. SKAT-O identified two significant genes, LRRK2 and IL10RA, and NHC identified 6 significant gene clusters that are biologically relevant to IBD-PD. We observed prominent overlaps between the enriched pathways in the known IBD, PD, and candidate IBD-PD gene sets. Additionally, we detected significantly enriched pathways unique to the IBD-PD, including MAPK signaling, LPS/IL-1 mediated inhibition of RXR function, and NAD signaling. Fourteen final candidate IBD-PD genes were prioritized by biological relatedness methods. The biological importance scores estimated by protein-protein interaction networks and pathway and ontology enrichment analyses indicated the involvement of genes related to immunity, inflammation, and autophagy in IBD-PD. Additionally, PheWAS provided support for the associations of candidate genes with IBD and PD.
Conclusions: Our study confirms and uncovers new LRRK2 associations in IBD-PD. The identification of novel inflammation and autophagy-related genes supports and expands previous findings related to IBD-PD pathogenesis, and underscores the significance of therapeutic interventions for reducing systemic inflammation.
Salmonella exploits LRRK2-dependent plasma membrane dynamics to invade host cells.
Zhu H, Sydor A, Yan B, Li R, Boniecki M, Lyons C Nat Commun. 2025; 16(1):2329.
PMID: 40057496 PMC: 11890592. DOI: 10.1038/s41467-025-57453-x.
Lee H, Kim W, Kwon N, Kim C, Kim S, An J Genomics Inform. 2025; 23(1):8.
PMID: 40050991 PMC: 11887102. DOI: 10.1186/s44342-025-00040-9.
Jones L, Cerquera-Cleves C, Schuh A, Makarious M, Iwaki H, Nalls M medRxiv. 2024; .
PMID: 39371162 PMC: 11451675. DOI: 10.1101/2024.09.23.24314240.