6.
Jaramillo-Yanez A, Benalcazar M, Mena-Maldonado E
. Real-Time Hand Gesture Recognition Using Surface Electromyography and Machine Learning: A Systematic Literature Review. Sensors (Basel). 2020; 20(9).
PMC: 7250028.
DOI: 10.3390/s20092467.
View
7.
Sandoval-Espino J, Zamudio-Lara A, Marban-Salgado J, Escobedo-Alatorre J, Palillero-Sandoval O, Velasquez-Aguilar J
. Selection of the Best Set of Features for sEMG-Based Hand Gesture Recognition Applying a CNN Architecture. Sensors (Basel). 2022; 22(13).
PMC: 9269838.
DOI: 10.3390/s22134972.
View
8.
Ajiboye A, Weir R
. Muscle synergies as a predictive framework for the EMG patterns of new hand postures. J Neural Eng. 2009; 6(3):036004.
PMC: 3151158.
DOI: 10.1088/1741-2560/6/3/036004.
View
9.
Jarrasse N, Nicol C, Touillet A, Richer F, Martinet N, Paysant J
. Classification of Phantom Finger, Hand, Wrist, and Elbow Voluntary Gestures in Transhumeral Amputees With sEMG. IEEE Trans Neural Syst Rehabil Eng. 2016; 25(1):68-77.
DOI: 10.1109/TNSRE.2016.2563222.
View
10.
Stango A, Negro F, Farina D
. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol. IEEE Trans Neural Syst Rehabil Eng. 2014; 23(2):189-98.
DOI: 10.1109/TNSRE.2014.2366752.
View
11.
Cote-Allard U, Fall C, Drouin A, Campeau-Lecours A, Gosselin C, Glette K
. Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning. IEEE Trans Neural Syst Rehabil Eng. 2019; 27(4):760-771.
DOI: 10.1109/TNSRE.2019.2896269.
View
12.
Santello M, Bianchi M, Gabiccini M, Ricciardi E, Salvietti G, Prattichizzo D
. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys Life Rev. 2016; 17:1-23.
PMC: 5839666.
DOI: 10.1016/j.plrev.2016.02.001.
View
13.
Scheme E, Englehart K, Hudgins B
. Selective classification for improved robustness of myoelectric control under nonideal conditions. IEEE Trans Biomed Eng. 2011; 58(6):1698-705.
DOI: 10.1109/TBME.2011.2113182.
View
14.
Hu Y, Wong Y, Wei W, Du Y, Kankanhalli M, Geng W
. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS One. 2018; 13(10):e0206049.
PMC: 6207326.
DOI: 10.1371/journal.pone.0206049.
View
15.
Atzori M, Gijsberts A, Castellini C, Caputo B, Mittaz Hager A, Elsig S
. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci Data. 2015; 1:140053.
PMC: 4421935.
DOI: 10.1038/sdata.2014.53.
View
16.
Liu F, Shen C, Lin G, Reid I
. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields. IEEE Trans Pattern Anal Mach Intell. 2015; 38(10):2024-39.
DOI: 10.1109/TPAMI.2015.2505283.
View
17.
Atzori M, Cognolato M, Muller H
. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands. Front Neurorobot. 2016; 10:9.
PMC: 5013051.
DOI: 10.3389/fnbot.2016.00009.
View
18.
Borzelli D, Burdet E, Pastorelli S, dAvella A, Gastaldi L
. Identification of the best strategy to command variable stiffness using electromyographic signals. J Neural Eng. 2020; 17(1):016058.
DOI: 10.1088/1741-2552/ab6d88.
View
19.
Fang C, He B, Wang Y, Cao J, Gao S
. EMG-Centered Multisensory Based Technologies for Pattern Recognition in Rehabilitation: State of the Art and Challenges. Biosensors (Basel). 2020; 10(8).
PMC: 7460307.
DOI: 10.3390/bios10080085.
View
20.
Fleming A, Stafford N, Huang S, Hu X, Ferris D, Huang H
. Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions. J Neural Eng. 2021; 18(4).
PMC: 8694273.
DOI: 10.1088/1741-2552/ac1176.
View