» Articles » PMID: 38728362

Machine Learning and Multi-omics Data Reveal Driver Gene-based Molecular Subtypes in Hepatocellular Carcinoma for Precision Treatment

Overview
Specialty Biology
Date 2024 May 10
PMID 38728362
Authors
Affiliations
Soon will be listed here.
Abstract

The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.

References
1.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z . clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021; 2(3):100141. PMC: 8454663. DOI: 10.1016/j.xinn.2021.100141. View

2.
Tokheim C, Wang X, Timms R, Zhang B, Mena E, Wang B . Systematic characterization of mutations altering protein degradation in human cancers. Mol Cell. 2021; 81(6):1292-1308.e11. PMC: 9245451. DOI: 10.1016/j.molcel.2021.01.020. View

3.
Tenen D, Chai L, Tan J . Metabolic alterations and vulnerabilities in hepatocellular carcinoma. Gastroenterol Rep (Oxf). 2021; 9(1):1-13. PMC: 7962738. DOI: 10.1093/gastro/goaa066. View

4.
Hao Y, Hao S, Andersen-Nissen E, Mauck 3rd W, Zheng S, Butler A . Integrated analysis of multimodal single-cell data. Cell. 2021; 184(13):3573-3587.e29. PMC: 8238499. DOI: 10.1016/j.cell.2021.04.048. View

5.
Zhang Z, Zhang Y, Mo W . The Autophagy Related Gene CHAF1B Is a Relevant Prognostic and Diagnostic Biomarker in Hepatocellular Carcinoma. Front Oncol. 2021; 10:626175. PMC: 7870991. DOI: 10.3389/fonc.2020.626175. View