» Articles » PMID: 38715920

A Comprehensive Review: Synergizing Stem Cell and Embryonic Development Knowledge in Mouse and Human Integrated Stem Cell-based Embryo Models

Overview
Specialty Cell Biology
Date 2024 May 8
PMID 38715920
Authors
Affiliations
Soon will be listed here.
Abstract

Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore . The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.

Citing Articles

Embryonic development grand challenge: crosslinking advances.

Brand-Saberi B Front Cell Dev Biol. 2024; 12:1467261.

PMID: 39364136 PMC: 11446776. DOI: 10.3389/fcell.2024.1467261.


Fetal and obstetrics manifestations of mitochondrial diseases.

Adelizzi A, Giri A, Di Donfrancesco A, Boito S, Prigione A, Bottani E J Transl Med. 2024; 22(1):853.

PMID: 39313811 PMC: 11421203. DOI: 10.1186/s12967-024-05633-6.

References
1.
Io S, Kabata M, Iemura Y, Semi K, Morone N, Minagawa A . Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell. 2021; 28(6):1023-1039.e13. DOI: 10.1016/j.stem.2021.03.013. View

2.
Yan L, Yang M, Guo H, Yang L, Wu J, Li R . Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013; 20(9):1131-9. DOI: 10.1038/nsmb.2660. View

3.
Liu X, Nefzger C, Rossello F, Chen J, Knaupp A, Firas J . Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat Methods. 2017; 14(11):1055-1062. DOI: 10.1038/nmeth.4436. View

4.
Guo G, von Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D . Epigenetic resetting of human pluripotency. Development. 2017; 144(15):2748-2763. PMC: 5560041. DOI: 10.1242/dev.146811. View

5.
Gafni O, Weinberger L, AlFatah Mansour A, Manor Y, Chomsky E, Ben-Yosef D . Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013; 504(7479):282-6. DOI: 10.1038/nature12745. View