» Articles » PMID: 38714892

Dendritic-cell-targeting Virus-like Particles As Potent MRNA Vaccine Carriers

Abstract

Messenger RNA vaccines lack specificity for dendritic cells (DCs)-the most effective cells at antigen presentation. Here we report the design and performance of a DC-targeting virus-like particle pseudotyped with an engineered Sindbis-virus glycoprotein that recognizes a surface protein on DCs, and packaging mRNA encoding for the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or for the glycoproteins B and D of herpes simplex virus 1. Injection of the DC-targeting SARS-CoV-2 mRNA vaccine in the footpad of mice led to substantially higher and durable antigen-specific immunoglobulin-G titres and cellular immune responses than untargeted virus-like particles and lipid-nanoparticle formulations. The vaccines also protected the mice from infection with SARS-CoV-2 or with herpes simplex virus 1. Virus-like particles with preferential uptake by DCs may facilitate the development of potent prophylactic and therapeutic vaccines.

Citing Articles

Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells.

Balaraman A, Babu M, Afzal M, Sanghvi G, M M R, Gupta S Regen Ther. 2025; 28:558-572.

PMID: 40034540 PMC: 11872554. DOI: 10.1016/j.reth.2025.01.019.


Developing mRNA Nanomedicines with Advanced Targeting Functions.

Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B Nanomicro Lett. 2025; 17(1):155.

PMID: 39979495 PMC: 11842722. DOI: 10.1007/s40820-025-01665-9.


The RNA Landscape of In Vivo-Assembled MS2 Virus-Like Particles as mRNA Carriers Reveals RNA Contamination from Host Viruses.

Ma C, Yang M, Zhou W, Guo S, Zhang H, Gong J Nano Lett. 2025; 25(8):3038-3044.

PMID: 39932477 PMC: 11869999. DOI: 10.1021/acs.nanolett.4c04541.


Nanoparticle containing recombinant excretory/secretory-24 protein of enhanced the cellular immune responses in mice.

Hasan M, Haseeb M, Gadahi J, Ehsan M, Wang Q, Lakho S Front Vet Sci. 2024; 11:1470084.

PMID: 39600880 PMC: 11588750. DOI: 10.3389/fvets.2024.1470084.


Better, Faster, Stronger: Accelerating mRNA-Based Immunotherapies With Nanocarriers.

Carvalho H, Fidalgo T, Acurcio R, Matos A, Satchi-Fainaro R, Florindo H Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024; 16(6):e2017.

PMID: 39537215 PMC: 11655444. DOI: 10.1002/wnan.2017.


References
1.
Roth G, Picece V, Ou B, Luo W, Pulendran B, Appel E . Designing spatial and temporal control of vaccine responses. Nat Rev Mater. 2021; 7(3):174-195. PMC: 8477997. DOI: 10.1038/s41578-021-00372-2. View

2.
Colby D, Sarnecki M, Barouch D, Tipsuk S, Stieh D, Kroon E . Safety and immunogenicity of Ad26 and MVA vaccines in acutely treated HIV and effect on viral rebound after antiretroviral therapy interruption. Nat Med. 2020; 26(4):498-501. DOI: 10.1038/s41591-020-0774-y. View

3.
Nguni T, Chasara C, Ndhlovu Z . Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Front Immunol. 2020; 11:590780. PMC: 7655734. DOI: 10.3389/fimmu.2020.590780. View

4.
Bernstein D, Cardin R, Smith G, Pickard G, Sollars P, Dixon D . The R2 non-neuroinvasive HSV-1 vaccine affords protection from genital HSV-2 infections in a guinea pig model. NPJ Vaccines. 2020; 5(1):104. PMC: 7648054. DOI: 10.1038/s41541-020-00254-8. View

5.
Awasthi S, Hook L, Pardi N, Wang F, Myles A, Cancro M . Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes. Sci Immunol. 2019; 4(39). PMC: 6822172. DOI: 10.1126/sciimmunol.aaw7083. View