» Articles » PMID: 29301551

RNA Virus Interference Via CRISPR/Cas13a System in Plants

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2018 Jan 6
PMID 29301551
Citations 168
Authors
Affiliations
Soon will be listed here.
Abstract

Background: CRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas13a (known previously as C2c2) is a class 2 type VI-A ribonuclease capable of targeting and cleaving single-stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/Cas13a to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants.

Results: CRISPR/Cas13a produces interference against green fluorescent protein (GFP)-expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. CRISPR RNA (crRNAs) targeting the HC-Pro and GFP sequences exhibit better interference than those targeting other regions such as coat protein (CP) sequence. Cas13a can also process pre-crRNAs into functional crRNAs.

Conclusions: Our data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses and for other RNA manipulations in plants.

Citing Articles

CRISPR-Cas applications in agriculture and plant research.

Tuncel A, Pan C, Clem J, Liu D, Qi Y Nat Rev Mol Cell Biol. 2025; .

PMID: 40055491 DOI: 10.1038/s41580-025-00834-3.


Reducing batch effects in single cell chromatin accessibility measurements by pooled transposition with MULTI-ATAC.

Conrad D, Phong K, Korotkevich E, McGinnis C, Zhu Q, Chow E bioRxiv. 2025; .

PMID: 40027737 PMC: 11870453. DOI: 10.1101/2025.02.14.638353.


MetaQ: fast, scalable and accurate metacell inference via single-cell quantization.

Li Y, Li H, Lin Y, Zhang D, Peng D, Liu X Nat Commun. 2025; 16(1):1205.

PMID: 39885131 PMC: 11782697. DOI: 10.1038/s41467-025-56424-6.


CellSP: Module discovery and visualization for subcellular spatial transcriptomics data.

Aggarwal B, Sinha S bioRxiv. 2025; .

PMID: 39868198 PMC: 11761418. DOI: 10.1101/2025.01.12.632553.


CHH hypermethylation contributes to the early ripening of grapes revealed by DNA methylome landscape of 'Kyoho' and its bud mutant.

Wei T, Wan Y, Liu H, Pei M, He G, Guo D Hortic Res. 2025; 12(1):uhae285.

PMID: 39866961 PMC: 11764089. DOI: 10.1093/hr/uhae285.


References
1.
Piquerez S, Harvey S, Beynon J, Ntoukakis V . Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Front Plant Sci. 2014; 5:671. PMC: 4253662. DOI: 10.3389/fpls.2014.00671. View

2.
Jiang W, Samai P, Marraffini L . Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity. Cell. 2016; 164(4):710-21. PMC: 4752873. DOI: 10.1016/j.cell.2015.12.053. View

3.
Mahas A, Stewart Jr C, Mahfouz M . Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnol Adv. 2017; 36(1):295-310. DOI: 10.1016/j.biotechadv.2017.11.008. View

4.
Fargette D, Konate G, Fauquet C, Muller E, Peterschmitt M, Thresh J . Molecular ecology and emergence of tropical plant viruses. Annu Rev Phytopathol. 2006; 44:235-60. DOI: 10.1146/annurev.phyto.44.120705.104644. View

5.
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W . Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017; 15(3):169-182. PMC: 5851899. DOI: 10.1038/nrmicro.2016.184. View