» Articles » PMID: 38693344

Forming Cognitive Maps for Abstract Spaces: the Roles of the Human Hippocampus and Orbitofrontal Cortex

Overview
Journal Commun Biol
Specialty Biology
Date 2024 May 1
PMID 38693344
Authors
Affiliations
Soon will be listed here.
Abstract

How does the human brain construct cognitive maps for decision-making and inference? Here, we conduct an fMRI study on a navigation task in multidimensional abstract spaces. Using a deep neural network model, we assess learning levels and categorized paths into exploration and exploitation stages. Univariate analyses show higher activation in the bilateral hippocampus and lateral prefrontal cortex during exploration, positively associated with learning level and response accuracy. Conversely, the bilateral orbitofrontal cortex (OFC) and retrosplenial cortex show higher activation during exploitation, negatively associated with learning level and response accuracy. Representational similarity analysis show that the hippocampus, entorhinal cortex, and OFC more accurately represent destinations in exploitation than exploration stages. These findings highlight the collaboration between the medial temporal lobe and prefrontal cortex in learning abstract space structures. The hippocampus may be involved in spatial memory formation and representation, while the OFC integrates sensory information for decision-making in multidimensional abstract spaces.

Citing Articles

The medial and lateral orbitofrontal cortex jointly represent the cognitive map of task space.

Tan L, Qiu Y, Qiu L, Lin S, Li J, Liao J Commun Biol. 2025; 8(1):163.

PMID: 39900714 PMC: 11791032. DOI: 10.1038/s42003-025-07588-w.


Brain network alterations in anorexia Nervosa: A Multi-Center structural connectivity study.

Kanzawa J, Kurokawa R, Takamura T, Nohara N, Kamiya K, Moriguchi Y Neuroimage Clin. 2025; 45:103737.

PMID: 39892053 PMC: 11841206. DOI: 10.1016/j.nicl.2025.103737.


Forming cognitive maps for abstract spaces: the roles of the human hippocampus and orbitofrontal cortex.

Qiu Y, Li H, Liao J, Chen K, Wu X, Liu B Commun Biol. 2024; 7(1):517.

PMID: 38693344 PMC: 11063219. DOI: 10.1038/s42003-024-06214-5.

References
1.
Rueckemann J, Sosa M, Giocomo L, Buffalo E . The grid code for ordered experience. Nat Rev Neurosci. 2021; 22(10):637-649. PMC: 9371942. DOI: 10.1038/s41583-021-00499-9. View

2.
Doeller C, Barry C, Burgess N . Evidence for grid cells in a human memory network. Nature. 2010; 463(7281):657-61. PMC: 3173857. DOI: 10.1038/nature08704. View

3.
Chaaya N, Battle A, Johnson L . An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus. Neurosci Biobehav Rev. 2018; 92:43-54. DOI: 10.1016/j.neubiorev.2018.05.013. View

4.
Sekeres M, Winocur G, Moscovitch M . The hippocampus and related neocortical structures in memory transformation. Neurosci Lett. 2018; 680:39-53. DOI: 10.1016/j.neulet.2018.05.006. View

5.
Kriegeskorte N, Bandettini P . Analyzing for information, not activation, to exploit high-resolution fMRI. Neuroimage. 2007; 38(4):649-62. PMC: 2099257. DOI: 10.1016/j.neuroimage.2007.02.022. View