6.
Ivanovic S, Simic K, Tesevic V, Vujisic L, Ljekocevic M, Godevac D
. GC-FID-MS Based Metabolomics to Access Plum Brandy Quality. Molecules. 2021; 26(5).
PMC: 7961760.
DOI: 10.3390/molecules26051391.
View
7.
Coble J, Fraga C
. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. J Chromatogr A. 2014; 1358:155-64.
DOI: 10.1016/j.chroma.2014.06.100.
View
8.
Styczynski M, Moxley J, Tong L, Walther J, Jensen K, Stephanopoulos G
. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem. 2007; 79(3):966-73.
DOI: 10.1021/ac0614846.
View
9.
Dervishi E, Zhang G, Zwierzchowski G, Mandal R, Wishart D, Ametaj B
. Serum metabolic fingerprinting of pre-lameness dairy cows by GC-MS reveals typical profiles that can identify susceptible cows. J Proteomics. 2019; 213:103620.
DOI: 10.1016/j.jprot.2019.103620.
View
10.
Shuman J, Cortes D, Armenta J, Pokrzywa R, Mendes P, Shulaev V
. Plant metabolomics by GC-MS and differential analysis. Methods Mol Biol. 2010; 678:229-46.
DOI: 10.1007/978-1-60761-682-5_17.
View
11.
Kodikara C, Netticadan T, Bandara N, Wijekoon C, Sura S
. A new UHPLC-HRMS metabolomics approach for the rapid and comprehensive analysis of phenolic compounds in blueberry, raspberry, blackberry, cranberry and cherry fruits. Food Chem. 2024; 445:138778.
DOI: 10.1016/j.foodchem.2024.138778.
View
12.
Dayananda B, Owen S, Kolobaric A, Chapman J, Cozzolino D
. Pre-processing Applied to Instrumental Data in Analytical Chemistry: A Brief Review of the Methods and Examples. Crit Rev Anal Chem. 2023; 54(8):2745-2753.
DOI: 10.1080/10408347.2023.2199864.
View
13.
Nicholson J, Connelly J, Lindon J, Holmes E
. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002; 1(2):153-61.
DOI: 10.1038/nrd728.
View
14.
Smith C, Want E, OMaille G, Abagyan R, Siuzdak G
. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006; 78(3):779-87.
DOI: 10.1021/ac051437y.
View
15.
OHagan S, Dunn W, Brown M, Knowles J, Kell D
. Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Anal Chem. 2004; 77(1):290-303.
DOI: 10.1021/ac049146x.
View
16.
Maciel E, Pereira Dos Santos N, Medina D, Lancas F
. Electron ionization mass spectrometry: Quo vadis?. Electrophoresis. 2022; 43(15):1587-1600.
DOI: 10.1002/elps.202100392.
View
17.
Stoudt S, Vasquez V, Martinez C
. Principles for data analysis workflows. PLoS Comput Biol. 2021; 17(3):e1008770.
PMC: 7971542.
DOI: 10.1371/journal.pcbi.1008770.
View
18.
Avramidou E, Sarri E, Ganopoulos I, Madesis P, Kougiteas L, Papadopoulou E
. Genetic and Metabolite Variability among Commercial Varieties and Advanced Lines of L. Plants (Basel). 2023; 12(4).
PMC: 9967272.
DOI: 10.3390/plants12040908.
View
19.
Duan Y, Yang H, Wei Z, Yang H, Fan S, Wu W
. Effects of Different Nitrogen Forms on Blackberry Fruit Quality. Foods. 2023; 12(12).
PMC: 10297631.
DOI: 10.3390/foods12122318.
View
20.
Wu Y, Huang X, Yang H, Zhang S, Lyu L, Li W
. Analysis of flavonoid-related metabolites in different tissues and fruit developmental stages of blackberry based on metabolome analysis. Food Res Int. 2023; 163:112313.
DOI: 10.1016/j.foodres.2022.112313.
View