6.
Thomeas-McEwing V, Psotka M, Gamazon E, Friedman P, Konkashbaev A, Kubo M
. Two polymorphic gene loci associated with treprostinil dose in pulmonary arterial hypertension. Pharmacogenet Genomics. 2022; 32(4):144-151.
DOI: 10.1097/FPC.0000000000000463.
View
7.
Zhang G, Zhou Y
. Artificial Intelligence and Machine Learning in Clinical Medicine. N Engl J Med. 2023; 388(25):2397-2398.
DOI: 10.1056/NEJMc2305287.
View
8.
Liu C, Shih E, Chen J, Huang C, Wu I, Chen P
. Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension. JACC Asia. 2022; 2(3):258-270.
PMC: 9627911.
DOI: 10.1016/j.jacasi.2022.02.008.
View
9.
Ramirez J, van Duijvenboden S, Aung N, Laguna P, Pueyo E, Tinker A
. Cardiovascular Predictive Value and Genetic Basis of Ventricular Repolarization Dynamics. Circ Arrhythm Electrophysiol. 2019; 12(10):e007549.
DOI: 10.1161/CIRCEP.119.007549.
View
10.
Austin E, Elliott C
. TBX4 syndrome: a systemic disease highlighted by pulmonary arterial hypertension in its most severe form. Eur Respir J. 2020; 55(5).
DOI: 10.1183/13993003.00585-2020.
View
11.
Rhodes C, Batai K, Bleda M, Haimel M, Southgate L, Germain M
. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respir Med. 2018; 7(3):227-238.
PMC: 6391516.
DOI: 10.1016/S2213-2600(18)30409-0.
View
12.
Niu Z, Fu M, Li Y, Ren H, Zhang X, Yao L
. Osthole alleviates pulmonary vascular remodeling by modulating microRNA-22-3p mediated lipid metabolic reprogramming. Phytomedicine. 2021; 96:153840.
DOI: 10.1016/j.phymed.2021.153840.
View
13.
Zhu N, Swietlik E, Welch C, Pauciulo M, Hagen J, Zhou X
. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med. 2021; 13(1):80.
PMC: 8112021.
DOI: 10.1186/s13073-021-00891-1.
View
14.
Ma H, Ye P, Zhang A, Yu W, Lin S, Zheng Y
. Upregulation of miR-335-5p Contributes to Right Ventricular Remodeling via Calumenin in Pulmonary Arterial Hypertension. Biomed Res Int. 2022; 2022:9294148.
PMC: 9557250.
DOI: 10.1155/2022/9294148.
View
15.
Greener J, Kandathil S, Moffat L, Jones D
. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2021; 23(1):40-55.
DOI: 10.1038/s41580-021-00407-0.
View
16.
Pu A, Ramani G, Chen Y, Perry J, Hong C
. Identification of novel genetic variants, including PIM1 and LINC01491, with ICD-10 based diagnosis of pulmonary arterial hypertension in the UK Biobank cohort. Front Drug Discov (Lausanne). 2023; 3.
PMC: 10121214.
DOI: 10.3389/fddsv.2023.1127736.
View
17.
Klimontov V, Koshechkin K, Orlova N, Sekacheva M, Orlov Y
. Medical Genetics, Genomics and Bioinformatics-2022. Int J Mol Sci. 2023; 24(10).
PMC: 10219379.
DOI: 10.3390/ijms24108968.
View
18.
Prohaska C, Zhang X, Schwantes-An T, Stearman R, Hooker S, Kittles R
. is a candidate gene in sickle cell disease-associated pulmonary hypertension and pulmonary arterial hypertension. Pulm Circ. 2023; 13(2):e12227.
PMC: 10124178.
DOI: 10.1002/pul2.12227.
View
19.
Hodgson J, Swietlik E, Salmon R, Hadinnapola C, Nikolic I, Wharton J
. Characterization of Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2019; 201(5):575-585.
PMC: 7047445.
DOI: 10.1164/rccm.201906-1141OC.
View
20.
Hemnes A, Luther J, Rhodes C, Burgess J, Carlson J, Fan R
. Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight. 2019; 4(1).
PMC: 6485674.
DOI: 10.1172/jci.insight.123611.
View