» Articles » PMID: 38657612

Microglial Lipid Droplet Accumulation in Tauopathy Brain is Regulated by Neuronal AMPK

Overview
Journal Cell Metab
Publisher Cell Press
Date 2024 Apr 24
PMID 38657612
Authors
Affiliations
Soon will be listed here.
Abstract

The accumulation of lipid droplets (LDs) in aging and Alzheimer's disease brains is considered a pathological phenomenon with unresolved cellular and molecular mechanisms. Utilizing stimulated Raman scattering (SRS) microscopy, we observed significant in situ LD accumulation in microglia of tauopathy mouse brains. SRS imaging, combined with deuterium oxide (DO) labeling, revealed heightened lipogenesis and impaired lipid turnover within LDs in tauopathy fly brains and human neurons derived from induced pluripotent stem cells (iPSCs). Transfer of unsaturated lipids from tauopathy iPSC neurons to microglia induced LD accumulation, oxidative stress, inflammation, and impaired phagocytosis. Neuronal AMP-activated protein kinase (AMPK) inhibits lipogenesis and promotes lipophagy in neurons, thereby reducing lipid flux to microglia. AMPK depletion in prodromal tauopathy mice increased LD accumulation, exacerbated pro-inflammatory microgliosis, and promoted neuropathology. Our findings provide direct evidence of native, aberrant LD accumulation in tauopathy brains and underscore the critical role of AMPK in regulating brain lipid homeostasis.

Citing Articles

Do microglia metabolize fructose in Alzheimer's disease?.

Sturno A, Hassell Jr J, Lanaspa M, Bruce K J Neuroinflammation. 2025; 22(1):85.

PMID: 40089786 DOI: 10.1186/s12974-025-03401-x.


Redox regulation: mechanisms, biology and therapeutic targets in diseases.

Li B, Ming H, Qin S, Nice E, Dong J, Du Z Signal Transduct Target Ther. 2025; 10(1):72.

PMID: 40050273 PMC: 11885647. DOI: 10.1038/s41392-024-02095-6.


The circular RNA circbabo(5,6,7,8S) regulates lipid metabolism and neuronal integrity via TGF-β/ROS/JNK/SREBP signaling axis in Drosophila.

Sheng J, Zhang X, Liang W, Lyu J, Zhang B, Min J BMC Biol. 2025; 23(1):69.

PMID: 40038674 PMC: 11881384. DOI: 10.1186/s12915-025-02175-1.


Innovations in aging biology: highlights from the ARDD emerging science & technologies workshop.

Unfried M, Schmauck-Medina T, Amin N, Boyden E, Fuellen G, Han J NPJ Aging. 2025; 11(1):8.

PMID: 39966395 PMC: 11836439. DOI: 10.1038/s41514-025-00193-5.


Lipid Metabolic Heterogeneity during Early Embryogenesis Revealed by Hyper-3D Stimulated Raman Imaging.

Huang J, Zhang L, Shao N, Zhang Y, Xu Y, Zhou Y Chem Biomed Imaging. 2025; 3(1):15-24.

PMID: 39886225 PMC: 11775849. DOI: 10.1021/cbmi.4c00055.


References
1.
Danielli M, Perne L, Jovicic E, Petan T . Lipid droplets and polyunsaturated fatty acid trafficking: Balancing life and death. Front Cell Dev Biol. 2023; 11:1104725. PMC: 9911892. DOI: 10.3389/fcell.2023.1104725. View

2.
Alzheimer A, Stelzmann R, SCHNITZLEIN H, Murtagh F . An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat. 1995; 8(6):429-31. DOI: 10.1002/ca.980080612. View

3.
Farmer B, Kluemper J, Johnson L . Apolipoprotein E4 Alters Astrocyte Fatty Acid Metabolism and Lipid Droplet Formation. Cells. 2019; 8(2). PMC: 6406677. DOI: 10.3390/cells8020182. View

4.
Claes C, Danhash E, Hasselmann J, Chadarevian J, Kiani Shabestari S, England W . Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer's disease. Mol Neurodegener. 2021; 16(1):50. PMC: 8305935. DOI: 10.1186/s13024-021-00473-0. View

5.
Shimabukuro M, Langhi L, Cordeiro I, Brito J, Batista C, Mattson M . Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes. Sci Rep. 2016; 6:23795. PMC: 4814830. DOI: 10.1038/srep23795. View