» Articles » PMID: 38649894

Arginine-linked HPV-associated E7 Displaying Bacteria-derived Outer Membrane Vesicles As a Potent Antigen-specific Cancer Vaccine

Overview
Journal J Transl Med
Publisher Biomed Central
Date 2024 Apr 22
PMID 38649894
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier.

Method: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7.

Results: Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells.

Conclusion: The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.

Citing Articles

Innovative Strategies in Oncology: Bacterial Membrane Vesicle-Based Drug Delivery Systems for Cancer Diagnosis and Therapy.

Li G, Pu S, You L, Gao Y, Zhong Y, Zhao H Pharmaceutics. 2025; 17(1).

PMID: 39861706 PMC: 11768367. DOI: 10.3390/pharmaceutics17010058.


Bacterial Outer Membrane Vesicle (OMV)-Encapsulated TiO Nanoparticles: A Dual-Action Strategy for Enhanced Radiotherapy and Immunomodulation in Oral Cancer Treatment.

Kan S, Zhang L, Wang Y, Chiang C, Chen M, Huang S Nanomaterials (Basel). 2024; 14(24).

PMID: 39728581 PMC: 11678132. DOI: 10.3390/nano14242045.


Salmonella-based therapeutic strategies: improving tumor microenvironment and bringing new hope for cancer immunotherapy.

He X, Guo J, Bai Y, Sun H, Yang J Med Oncol. 2024; 42(1):27.

PMID: 39666238 DOI: 10.1007/s12032-024-02578-0.

References
1.
Pan J, Li X, Shao B, Xu F, Huang X, Guo X . Self-Blockade of PD-L1 with Bacteria-Derived Outer-Membrane Vesicle for Enhanced Cancer Immunotherapy. Adv Mater. 2021; 34(7):e2106307. DOI: 10.1002/adma.202106307. View

2.
Ma Y, Yang A, Peng S, Qiu J, Farmer E, Hung C . Characterization of HPV18 E6-specific T cell responses and establishment of HPV18 E6-expressing tumor model. Vaccine. 2017; 35(31):3850-3858. PMC: 5524135. DOI: 10.1016/j.vaccine.2017.05.081. View

3.
Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L . Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther. 2023; 8(1):9. PMC: 9816309. DOI: 10.1038/s41392-022-01270-x. View

4.
Chen Q, Bai H, Wu W, Huang G, Li Y, Wu M . Bioengineering Bacterial Vesicle-Coated Polymeric Nanomedicine for Enhanced Cancer Immunotherapy and Metastasis Prevention. Nano Lett. 2019; 20(1):11-21. DOI: 10.1021/acs.nanolett.9b02182. View

5.
Cecil J, Sirisaengtaksin N, OBrien-Simpson N, Krachler A . Outer Membrane Vesicle-Host Cell Interactions. Microbiol Spectr. 2019; 7(1). PMC: 6352913. DOI: 10.1128/microbiolspec.PSIB-0001-2018. View