» Articles » PMID: 38626376

Suppressed Lone Pair Electrons Explain Unconventional Rise of Lattice Thermal Conductivity in Defective Crystalline Solids

Overview
Journal Adv Sci (Weinh)
Date 2024 Apr 16
PMID 38626376
Authors
Affiliations
Soon will be listed here.
Abstract

Manipulating thermal properties of materials can be interpreted as the control of how vibrations of atoms (known as phonons) scatter in a crystal lattice. Compared to a perfect crystal, crystalline solids with defects are expected to have shorter phonon mean free paths caused by point defect scattering, leading to lower lattice thermal conductivities than those without defects. While this is true in many cases, alloying can increase the phonon mean free path in the Cd-doped AgSnSbSe system to increase the lattice thermal conductivity from 0.65 to 1.05 W m K by replacing 18% of the Sb sites with Cd. It is found that the presence of lone pair electrons leads to the off-centering of cations from the centrosymmetric position of a cubic lattice. X-ray pair distribution function analysis reveals that this structural distortion is relieved when the electronic configuration of the dopant element cannot produce lone pair electrons. Furthermore, a decrease in the Grüneisen parameter with doping is experimentally confirmed, establishing a relationship between the stereochemical activity of lone pair electrons and the lattice anharmonicity. The observed "harmonic" behavior with doping suggests that lone pair electrons must be preserved to effectively suppress phonon transport in these systems.

Citing Articles

Suppressed Lone Pair Electrons Explain Unconventional Rise of Lattice Thermal Conductivity in Defective Crystalline Solids.

Jang H, Toriyama M, Abbey S, Frimpong B, Snyder G, Jung Y Adv Sci (Weinh). 2024; 11(24):e2308075.

PMID: 38626376 PMC: 11200014. DOI: 10.1002/advs.202308075.

References
1.
Quarez E, Hsu K, Pcionek R, Frangis N, Polychroniadis E, Kanatzidis M . Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. J Am Chem Soc. 2005; 127(25):9177-90. DOI: 10.1021/ja051653o. View

2.
Christensen M, Abrahamsen A, Christensen N, Juranyi F, Andersen N, Lefmann K . Avoided crossing of rattler modes in thermoelectric materials. Nat Mater. 2008; 7(10):811-5. DOI: 10.1038/nmat2273. View

3.
Kim S, Lee K, Mun H, Kim H, Hwang S, Roh J . Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015; 348(6230):109-14. DOI: 10.1126/science.aaa4166. View

4.
Bozin E, Malliakas C, Souvatzis P, Proffen T, Spaldin N, Kanatzidis M . Entropically stabilized local dipole formation in lead chalcogenides. Science. 2010; 330(6011):1660-3. DOI: 10.1126/science.1192759. View

5.
Thomae S, Prinz N, Hartmann T, Teck M, Correll S, Zobel M . Pushing data quality for laboratory pair distribution function experiments. Rev Sci Instrum. 2019; 90(4):043905. DOI: 10.1063/1.5093714. View