» Articles » PMID: 38621122

Catch Bond Kinetics Are Instrumental to Cohesion of Fire Ant Rafts Under Load

Overview
Specialty Science
Date 2024 Apr 15
PMID 38621122
Authors
Affiliations
Soon will be listed here.
Abstract

Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula: see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.

Citing Articles

Catch bond kinetics are instrumental to cohesion of fire ant rafts under load.

Wagner R, Lamont S, White Z, Vernerey F Proc Natl Acad Sci U S A. 2024; 121(17):e2314772121.

PMID: 38621122 PMC: 11047079. DOI: 10.1073/pnas.2314772121.

References
1.
Tschinkel W . The morphometry of solenopsis fire ants. PLoS One. 2013; 8(11):e79559. PMC: 3834273. DOI: 10.1371/journal.pone.0079559. View

2.
Stukalin E, Cai L, Kumar N, Leibler L, Rubinstein M . Self-Healing of Unentangled Polymer Networks with Reversible Bonds. Macromolecules. 2013; 46(18). PMC: 3857756. DOI: 10.1021/ma401111n. View

3.
Tong R, Chen G, Pan D, Qi H, Li R, Tian J . Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Biomacromolecules. 2019; 20(5):2096-2104. DOI: 10.1021/acs.biomac.9b00322. View

4.
Gallivan J, Dougherty D . Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A. 1999; 96(17):9459-64. PMC: 22230. DOI: 10.1073/pnas.96.17.9459. View

5.
Rincon S, Lamson A, Blackwell R, Syrovatkina V, Fraisier V, Paoletti A . Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast. Nat Commun. 2017; 8:15286. PMC: 5442317. DOI: 10.1038/ncomms15286. View