» Articles » PMID: 38606889

Atherosclerosis Evaluation and Cardiovascular Risk Estimation Using Coronary Computed Tomography Angiography

Abstract

Clinical risk scores based on traditional risk factors of atherosclerosis correlate imprecisely to an individual's complex pathophysiological predisposition to atherosclerosis and provide limited accuracy for predicting major adverse cardiovascular events (MACE). Over the past two decades, computed tomography scanners and techniques for coronary computed tomography angiography (CCTA) analysis have substantially improved, enabling more precise atherosclerotic plaque quantification and characterization. The accuracy of CCTA for quantifying stenosis and atherosclerosis has been validated in numerous multicentre studies and has shown consistent incremental prognostic value for MACE over the clinical risk spectrum in different populations. Serial CCTA studies have advanced our understanding of vascular biology and atherosclerotic disease progression. The direct disease visualization of CCTA has the potential to be used synergistically with indirect markers of risk to significantly improve prevention of MACE, pending large-scale randomized evaluation.

Citing Articles

Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a retrospective cohort study and predictive modeling based on machine learning.

Guo Y, Wang F, Ma S, Mao Z, Zhao S, Sui L Cardiovasc Diabetol. 2025; 24(1):95.

PMID: 40022165 PMC: 11871731. DOI: 10.1186/s12933-025-02654-3.


Inflammation in atherosclerosis: a Big Idea that has underperformed so far.

Williams K Curr Opin Lipidol. 2025; .

PMID: 39846349 PMC: 11888836. DOI: 10.1097/MOL.0000000000000973.


Antithrombotic therapy for a case report of acute myocardial infarction after laparoscopic radical cystectomy.

Wang Z, Yuan H, Chu J, Duan S, Zhang Z, Song C Front Pharmacol. 2025; 15():1477715.

PMID: 39830348 PMC: 11739146. DOI: 10.3389/fphar.2024.1477715.


End-to-end deep-learning model for the detection of coronary artery stenosis on coronary CT images.

Gupta V, Petursson P, Rawshani A, Boren J, Ramunddal T, Bhatt D Open Heart. 2025; 12(1.

PMID: 39800435 PMC: 11751816. DOI: 10.1136/openhrt-2024-002998.


Coronary atherosclerosis in athletes: emerging concepts and preventive strategies.

Claessen G, Eijsvogels T, Albert C, Baggish A, Levine B, Marijon E Eur Heart J. 2025; 46(10):890-903.

PMID: 39791533 PMC: 11887545. DOI: 10.1093/eurheartj/ehae927.


References
1.
Ma T, Zhou B, Hsiai T, Shung K . A Review of Intravascular Ultrasound-based Multimodal Intravascular Imaging: The Synergistic Approach to Characterizing Vulnerable Plaques. Ultrason Imaging. 2015; 38(5):314-31. PMC: 4803636. DOI: 10.1177/0161734615604829. View

2.
Fuchs A, Kuhl J, Sigvardsen P, Afzal S, Knudsen A, Moller M . Subclinical Coronary Atherosclerosis and Risk for Myocardial Infarction in a Danish Cohort : A Prospective Observational Cohort Study. Ann Intern Med. 2023; 176(4):433-442. DOI: 10.7326/M22-3027. View

3.
Lin A, Manral N, McElhinney P, Killekar A, Matsumoto H, Kwiecinski J . Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. Lancet Digit Health. 2022; 4(4):e256-e265. PMC: 9047317. DOI: 10.1016/S2589-7500(22)00022-X. View

4.
CASTELLI W, Anderson K, Wilson P, Levy D . Lipids and risk of coronary heart disease. The Framingham Study. Ann Epidemiol. 1992; 2(1-2):23-8. DOI: 10.1016/1047-2797(92)90033-m. View

5.
van Rosendael A, van den Hoogen I, Gianni U, Ma X, Tantawy S, Bax A . Association of Statin Treatment With Progression of Coronary Atherosclerotic Plaque Composition. JAMA Cardiol. 2021; 6(11):1257-1266. PMC: 8374741. DOI: 10.1001/jamacardio.2021.3055. View