» Articles » PMID: 38600146

Low-nuclearity CuZn Ensembles on ZnZrO Catalyze Methanol Synthesis from CO

Abstract

Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrO, for CO hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrO catalysts with small amounts (0.5 mol%) of diverse hydrogenation metals (Re, Co, Au, Ni, Rh, Ag, Ir, Ru, Pt, Pd, and Cu) prepared via a standardized flame spray pyrolysis approach. Cu emerges as the most effective promoter, doubling methanol productivity. Operando X-ray absorption, infrared, and electron paramagnetic resonance spectroscopic analyses and density functional theory simulations reveal that Cu species form Zn-rich low-nuclearity CuZn clusters on the ZrO surface during reaction, which correlates with the generation of oxygen vacancies in their vicinity. Mechanistic studies demonstrate that this catalytic ensemble promotes the rapid hydrogenation of intermediate formate into methanol while effectively suppressing CO production, showcasing the potential of low-nuclearity metal ensembles in CO-based methanol synthesis.

Citing Articles

Tuning the electronic structure and SMSI by integrating trimetallic sites with defective ceria for the CO reduction reaction.

Singhvi C, Sharma G, Verma R, Paidi V, Glatzel P, Paciok P Proc Natl Acad Sci U S A. 2025; 122(3):e2411406122.

PMID: 39813253 PMC: 11759900. DOI: 10.1073/pnas.2411406122.


Design Principles of Catalytic Materials for CO Hydrogenation to Methanol.

Araujo T, Mitchell S, Perez-Ramirez J Adv Mater. 2024; 36(48):e2409322.

PMID: 39300859 PMC: 11602685. DOI: 10.1002/adma.202409322.

References
1.
Lee K, Mendes P, Jeon H, Song Y, Dickieson M, Anjum U . Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrO. Nat Commun. 2023; 14(1):819. PMC: 9925737. DOI: 10.1038/s41467-023-36407-1. View

2.
Wu C, Lin L, Liu J, Zhang J, Zhang F, Zhou T . Inverse ZrO/Cu as a highly efficient methanol synthesis catalyst from CO hydrogenation. Nat Commun. 2020; 11(1):5767. PMC: 7666171. DOI: 10.1038/s41467-020-19634-8. View

3.
Frei M, Mondelli C, Garcia-Muelas R, Morales-Vidal J, Philipp M, Safonova O . Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO hydrogenation. Nat Commun. 2021; 12(1):1960. PMC: 8010022. DOI: 10.1038/s41467-021-22224-x. View

4.
Araujo T, Morales-Vidal J, Giannakakis G, Mondelli C, Eliasson H, Erni R . Reaction-Induced Metal-Metal Oxide Interactions in Pd-In O /ZrO Catalysts Drive Selective and Stable CO Hydrogenation to Methanol. Angew Chem Int Ed Engl. 2023; 62(42):e202306563. DOI: 10.1002/anie.202306563. View

5.
Kresse , Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter. 1996; 54(16):11169-11186. DOI: 10.1103/physrevb.54.11169. View